BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33724470)

  • 1. Evolution of cold tolerance and thermal plasticity in life history, behaviour and physiology during a poleward range expansion.
    Carbonell JA; Wang YJ; Stoks R
    J Anim Ecol; 2021 Jul; 90(7):1666-1677. PubMed ID: 33724470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal evolution of life history and heat tolerance during range expansions toward warmer and cooler regions.
    Carbonell JA; Stoks R
    Ecology; 2020 Oct; 101(10):e03134. PubMed ID: 32691873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid evolution of larval life history, adult immune function and flight muscles in a poleward-moving damselfly.
    Therry L; Nilsson-Örtman V; Bonte D; Stoks R
    J Evol Biol; 2014 Jan; 27(1):141-52. PubMed ID: 24313892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convergence of life history and physiology during range expansion toward the phenotype of the native sister species.
    Swaegers J; Sánchez-Guillén RA; Carbonell JA; Stoks R
    Sci Total Environ; 2022 Apr; 816():151530. PubMed ID: 34762959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression under thermal stress varies across a geographical range expansion front.
    Lancaster LT; Dudaniec RY; Chauhan P; Wellenreuther M; Svensson EI; Hansson B
    Mol Ecol; 2016 Mar; 25(5):1141-56. PubMed ID: 26821170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity and associated epigenetic mechanisms play a role in thermal evolution during range expansion.
    Swaegers J; De Cupere S; Gaens N; Lancaster LT; Carbonell JA; Sánchez Guillén RA; Stoks R
    Evol Lett; 2024 Feb; 8(1):76-88. PubMed ID: 38370551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast pace-of-life is traded off against a high thermal performance.
    Tüzün N; Stoks R
    Proc Biol Sci; 2022 Apr; 289(1972):20212414. PubMed ID: 35414235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indications for rapid evolution of trait means and thermal plasticity in range-expanding populations of a butterfly.
    Neu A; Fischer K
    J Evol Biol; 2022 Jan; 35(1):124-133. PubMed ID: 34860427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutral and adaptive genomic signatures of rapid poleward range expansion.
    Swaegers J; Mergeay J; Van Geystelen A; Therry L; Larmuseau MH; Stoks R
    Mol Ecol; 2015 Dec; 24(24):6163-76. PubMed ID: 26561985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature variation makes an ectotherm more sensitive to global warming unless thermal evolution occurs.
    Verheyen J; Stoks R
    J Anim Ecol; 2019 Apr; 88(4):624-636. PubMed ID: 30637722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed effects of chlorpyrifos across metamorphosis on dispersal-related traits in a poleward moving damselfly.
    Dinh KV; Janssens L; Therry L; Bervoets L; Bonte D; Stoks R
    Environ Pollut; 2016 Nov; 218():634-643. PubMed ID: 27476426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic compensation rather than genetic assimilation drives the evolution of plasticity in response to mild warming across latitudes in a damselfly.
    Swaegers J; Spanier KI; Stoks R
    Mol Ecol; 2020 Dec; 29(24):4823-4834. PubMed ID: 33031581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for locally adaptive metabolic rates among ant populations along an elevational gradient.
    Shik JZ; Arnan X; Oms CS; Cerdá X; Boulay R
    J Anim Ecol; 2019 Aug; 88(8):1240-1249. PubMed ID: 31077366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae.
    Stoks R; Swillen I; De Block M
    J Anim Ecol; 2012 Sep; 81(5):1034-40. PubMed ID: 22524392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species.
    MacLean HJ; Sørensen JG; Kristensen TN; Loeschcke V; Beedholm K; Kellermann V; Overgaard J
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180548. PubMed ID: 31203763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adverse effects of the pesticide chlorpyrifos on the physiology of a damselfly only occur at the cold and hot extremes of a temperature gradient.
    Verheyen J; Cuypers K; Stoks R
    Environ Pollut; 2023 Jun; 326():121438. PubMed ID: 36963457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response to selection for rapid chill-coma recovery in Drosophila melanogaster: physiology and life-history traits.
    Anderson AR; Hoffmann AA; McKechnie SW
    Genet Res; 2005 Feb; 85(1):15-22. PubMed ID: 16089033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Staying in place and moving in space: Contrasting larval thermal sensitivity explains distributional changes of sympatric sea urchin species to habitat warming.
    Byrne M; Gall ML; Campbell H; Lamare MD; Holmes SP
    Glob Chang Biol; 2022 May; 28(9):3040-3053. PubMed ID: 35108424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid growth reduces cold resistance: evidence from latitudinal variation in growth rate, cold resistance and stress proteins.
    Stoks R; De Block M
    PLoS One; 2011 Feb; 6(2):e16935. PubMed ID: 21390210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trade-Offs in Cold Resistance at the Northern Range Edge of the Common Woodland Ant
    Nguyen AD; Brown M; Zitnay J; Cahan SH; Gotelli NJ; Arnett A; Ellison AM
    Am Nat; 2019 Dec; 194(6):E151-E163. PubMed ID: 31738107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.