These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 33724543)
21. The relaxivity of Gd-EOB-DTPA and Gd-DTPA in liver and kidney of the Wistar rat. Shuter B; Tofts PS; Wang SC; Pope JM Magn Reson Imaging; 1996; 14(3):243-53. PubMed ID: 8725190 [TBL] [Abstract][Full Text] [Related]
22. Does Age Interfere With Gadolinium Toxicity and Presence in Brain and Bone Tissues?: A Comparative Gadoterate Versus Gadodiamide Study in Juvenile and Adult Rats. Fretellier N; Granottier A; Rasschaert M; Grindel AL; Baudimont F; Robert P; Idée JM; Corot C Invest Radiol; 2019 Feb; 54(2):61-71. PubMed ID: 30394964 [TBL] [Abstract][Full Text] [Related]
24. A novel gadolinium-based trimetasphere metallofullerene for application as a magnetic resonance imaging contrast agent. Adiseshaiah P; Dellinger A; MacFarland D; Stern S; Dobrovolskaia M; Ileva L; Patri AK; Bernardo M; Brooks DB; Zhou Z; McNeil S; Kepley C Invest Radiol; 2013 Nov; 48(11):745-54. PubMed ID: 23748228 [TBL] [Abstract][Full Text] [Related]
25. Green Synthesis of Sub-10 nm Gadolinium-Based Nanoparticles for Sparkling Kidneys, Tumor, and Angiogenesis of Tumor-Bearing Mice in Magnetic Resonance Imaging. Zhang B; Yang W; Yu J; Guo W; Wang J; Liu S; Xiao Y; Shi D Adv Healthc Mater; 2017 Feb; 6(4):. PubMed ID: 28004887 [TBL] [Abstract][Full Text] [Related]
26. High relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging. Naccache R; Chevallier P; Lagueux J; Gossuin Y; Laurent S; Vander Elst L; Chilian C; Capobianco JA; Fortin MA Adv Healthc Mater; 2013 Nov; 2(11):1478-88. PubMed ID: 23666643 [TBL] [Abstract][Full Text] [Related]
27. Mannan-coated liposome delivery of gadolinium-diethylenetriaminepentaacetic acid, a contrast agent for use in magnetic resonance imaging. Kunimasa J; Inui K; Hori R; Kawamura Y; Endo K Chem Pharm Bull (Tokyo); 1992 Sep; 40(9):2565-7. PubMed ID: 1446380 [TBL] [Abstract][Full Text] [Related]
28. Colloidal amphiphile self-assembly particles composed of gadolinium oleate and myverol: evaluation as contrast agents for magnetic resonance imaging. Liu G; Conn CE; Waddington LJ; Mudie ST; Drummond CJ Langmuir; 2010 Feb; 26(4):2383-91. PubMed ID: 19852474 [TBL] [Abstract][Full Text] [Related]
29. Development of Bifunctional Gadolinium-Labeled Superparamagnetic Nanoparticles (Gd-MnMEIO) for In Vivo MR Imaging of the Liver in an Animal Model. Kuo YT; Chen CY; Liu GC; Wang YM PLoS One; 2016; 11(2):e0148695. PubMed ID: 26886558 [TBL] [Abstract][Full Text] [Related]
30. Biocompatible nanotemplate-engineered nanoparticles containing gadolinium: stability and relaxivity of a potential MRI contrast agent. Zhu D; White RD; Hardy PA; Weerapreeyakul N; Sutthanut K; Jay M J Nanosci Nanotechnol; 2006 Apr; 6(4):996-1003. PubMed ID: 16736756 [TBL] [Abstract][Full Text] [Related]
32. Evaluating size-dependent relaxivity of PEGylated-USPIOs to develop gadolinium-free T1 contrast agents for vascular imaging. Khandhar AP; Wilson GJ; Kaul MG; Salamon J; Jung C; Krishnan KM J Biomed Mater Res A; 2018 Sep; 106(9):2440-2447. PubMed ID: 29664208 [TBL] [Abstract][Full Text] [Related]
33. Nanotemplate-engineered nanoparticles containing gadolinium for magnetic resonance imaging of tumors. Zhu D; Lu X; Hardy PA; Leggas M; Jay M Invest Radiol; 2008 Feb; 43(2):129-40. PubMed ID: 18197065 [TBL] [Abstract][Full Text] [Related]
34. Exceedingly Small Gadolinium Oxide Nanoparticles with Remarkable Relaxivities for Magnetic Resonance Imaging of Tumors. Shen Z; Fan W; Yang Z; Liu Y; Bregadze VI; Mandal SK; Yung BC; Lin L; Liu T; Tang W; Shan L; Liu Y; Zhu S; Wang S; Yang W; Bryant LH; Nguyen DT; Wu A; Chen X Small; 2019 Oct; 15(41):e1903422. PubMed ID: 31448577 [TBL] [Abstract][Full Text] [Related]
35. Chitosan Oligosaccharide Lactate-Coated Ultrasmall Gadolinium Oxide Nanoparticles: Synthesis, Ahmad MY; Ahmad MW; Yue H; Ho SL; Cha H; Marasini S; Tegafaw T; Liu S; Ghazanfari A; Chae KS; Chang Y; Lee GH J Nanosci Nanotechnol; 2021 Aug; 21(8):4145-4150. PubMed ID: 33714294 [TBL] [Abstract][Full Text] [Related]
36. Comparison of iron oxide particles (AMI 227) with a gadolinium complex (Gd-DOTA) in dynamic susceptibility contrast MR imagings (FLASH and EPI) for both phantom and rat brain at 1.5 Tesla. Loubeyre P; De Jaegere T; Bosmans H; Miao Y; Ni Y; Landuyt W; Marchal G J Magn Reson Imaging; 1999 Mar; 9(3):447-53. PubMed ID: 10194716 [TBL] [Abstract][Full Text] [Related]
37. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy. Haar PJ; Broaddus WC; Chen ZJ; Fatouros PP; Gillies GT; Corwin FD Phys Med Biol; 2010 Jun; 55(12):3451-65. PubMed ID: 20508321 [TBL] [Abstract][Full Text] [Related]
38. Delayed Gadolinium-enhanced MR Imaging of Cartilage: A Comparative Analysis of Different Gadolinium-based Contrast Agents in an ex Vivo Porcine Model. Kang Y; Choi JY; Yoo HJ; Hong SH; Kang HS Radiology; 2017 Mar; 282(3):734-742. PubMed ID: 27649101 [TBL] [Abstract][Full Text] [Related]
39. Fabrication of Gd-DOTA-functionalized carboxylated nanodiamonds for selective MR imaging (MRI) of the lymphatic system. Yano K; Matsumoto T; Okamoto Y; Kurokawa N; Hasebe T; Hotta A Nanotechnology; 2021 Mar; 32(23):. PubMed ID: 33657547 [TBL] [Abstract][Full Text] [Related]
40. Relaxivity enhancement of aquated Tris(β-diketonate)gadolinium(III) chelates by confinement within ultrashort single-walled carbon nanotubes. Law JJ; Guven A; Wilson LJ Contrast Media Mol Imaging; 2014; 9(6):409-12. PubMed ID: 24764189 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]