These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. Noncovalent functionalization of carbon nanotubes with amphiphilic gd3+ chelates: toward powerful t1 and t2 MRI contrast agents. Richard C; Doan BT; Beloeil JC; Bessodes M; Tóth E; Scherman D Nano Lett; 2008 Jan; 8(1):232-6. PubMed ID: 18088153 [TBL] [Abstract][Full Text] [Related]
64. Chimeric mouse model for MRI contrast agent evaluation. Mir FF; Tomaszewski RP; Shuboni-Mulligan DD; Mallett CL; Hix JML; Ether ND; Shapiro EM Magn Reson Med; 2019 Jul; 82(1):387-394. PubMed ID: 30874333 [TBL] [Abstract][Full Text] [Related]
65. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Pintaske J; Martirosian P; Graf H; Erb G; Lodemann KP; Claussen CD; Schick F Invest Radiol; 2006 Mar; 41(3):213-21. PubMed ID: 16481903 [TBL] [Abstract][Full Text] [Related]
66. Oligoethylenimine-grafted chitosan as enhanced T1 contrast agent for in vivo targeted tumor MRI. Tong X; Liu M; Zhang K; Cao Y; Dong J; Jiang B; Lu B; Zheng H; Zhang H; Pei R J Magn Reson Imaging; 2016 Jul; 44(1):23-9. PubMed ID: 26713668 [TBL] [Abstract][Full Text] [Related]
67. The magnetic, relaxometric, and optical properties of gadolinium-catalyzed single walled carbon nanotubes. Sitharaman B; Jacobson BD; Wadghiri YZ; Bryant H; Frank J J Appl Phys; 2013 Apr; 113(13):134308. PubMed ID: 23653487 [TBL] [Abstract][Full Text] [Related]
68. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Mikawa M; Kato H; Okumura M; Narazaki M; Kanazawa Y; Miwa N; Shinohara H Bioconjug Chem; 2001; 12(4):510-4. PubMed ID: 11459454 [TBL] [Abstract][Full Text] [Related]
69. Contrast-enhanced magnetic resonance angiography: evaluation of the high relaxivity low diffusible gadolinium-based contrast agent P846 in comparison with gadoterate meglumine in rabbits at 1.5 Tesla and 3.0 Tesla. Peldschus K; Hamdorf M; Robert P; Port M; Graessner J; Adam G; Herborn CU Invest Radiol; 2008 Dec; 43(12):837-42. PubMed ID: 19002055 [TBL] [Abstract][Full Text] [Related]
71. Compartmentalization of Gd liposomes: the quenching effect explained. Guenoun J; Doeswijk GN; Krestin GP; Bernsen MR Contrast Media Mol Imaging; 2016; 11(2):106-14. PubMed ID: 26463264 [TBL] [Abstract][Full Text] [Related]
72. Upconverting rare-earth nanoparticles with a paramagnetic lanthanide complex shell for upconversion fluorescent and magnetic resonance dual-modality imaging. Wang Y; Ji L; Zhang B; Yin P; Qiu Y; Song D; Zhou J; Li Q Nanotechnology; 2013 May; 24(17):175101. PubMed ID: 23558298 [TBL] [Abstract][Full Text] [Related]
73. Synthesis and evaluation of novel macrocyclic and acyclic ligands as contrast enhancement agents for magnetic resonance imaging. Chong HS; Garmestani K; Bryant LH; Milenic DE; Overstreet T; Birch N; Le T; Brady ED; Brechbiel MW J Med Chem; 2006 Mar; 49(6):2055-62. PubMed ID: 16539394 [TBL] [Abstract][Full Text] [Related]
74. High proton relaxivity for gadolinium oxide nanoparticles. Engström M; Klasson A; Pedersen H; Vahlberg C; Käll PO; Uvdal K MAGMA; 2006 Sep; 19(4):180-6. PubMed ID: 16909260 [TBL] [Abstract][Full Text] [Related]
75. Gadolinium zeolite as an oral contrast agent for magnetic resonance imaging. Young SW; Qing F; Rubin D; Balkus KJ; Engel JS; Lang J; Dow WC; Mutch JD; Miller RA J Magn Reson Imaging; 1995; 5(5):499-508. PubMed ID: 8574032 [TBL] [Abstract][Full Text] [Related]
76. Linear and Core-Crosslinked Glycopolymer-Gadolinium Conjugates: Preparation and Their Behaviors as Nanoscale Magnetic Resonance Imaging Contrast Agents. Qu Y; Li Y; Liao S; Sun J; Li M; Wang D; Xia C; Luo Q; Hu J; Luo K; Gong Q; Song B J Biomed Nanotechnol; 2019 Aug; 15(8):1637-1653. PubMed ID: 31219024 [TBL] [Abstract][Full Text] [Related]
77. Novel Hybrid Dextran-Gadolinium Nanoparticles as High-relaxivity T1 Magnetic Resonance Imaging Contrast Agent for Mapping the Sentinel Lymph Node. Lu B; Wang H; Lu Q; Tang Z; Dou H; Dai T; Li S J Comput Assist Tomogr; 2019; 43(2):350-357. PubMed ID: 30875338 [TBL] [Abstract][Full Text] [Related]
78. Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Donahue KM; Burstein D; Manning WJ; Gray ML Magn Reson Med; 1994 Jul; 32(1):66-76. PubMed ID: 8084239 [TBL] [Abstract][Full Text] [Related]
79. Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action. Caravan P Acc Chem Res; 2009 Jul; 42(7):851-62. PubMed ID: 19222207 [TBL] [Abstract][Full Text] [Related]
80. Gadolinium complex and phosphorescent probe-modified NaDyF4 nanorods for T1- and T2-weighted MRI/CT/phosphorescence multimodality imaging. Zhou J; Lu Z; Shan G; Wang S; Liao Y Biomaterials; 2014 Jan; 35(1):368-77. PubMed ID: 24119502 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]