These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33724791)

  • 21. Model-based control system design to manage process parameters in mammalian cell culture for biopharmaceutical manufacturing.
    Sakaki A; Namatame T; Nakaya M; Omasa T
    Biotechnol Bioeng; 2024 Feb; 121(2):605-617. PubMed ID: 37960996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques.
    Zhang X; Yin H; Cooper JM; Haswell SJ
    Anal Bioanal Chem; 2008 Feb; 390(3):833-40. PubMed ID: 17849101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell engineering and cultivation of chinese hamster ovary (CHO) cells.
    Omasa T; Onitsuka M; Kim WD
    Curr Pharm Biotechnol; 2010 Apr; 11(3):233-40. PubMed ID: 20210750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Population-based modeling of the progression of apoptosis in mammalian cell culture.
    Meshram M; Naderi S; McConkey B; Budman H; Scharer J; Ingalls B
    Biotechnol Bioeng; 2012 May; 109(5):1193-204. PubMed ID: 22125113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering a deformation-free plastic spiral inertial microfluidic system for CHO cell clarification in biomanufacturing.
    Jeon H; Kwon T; Yoon J; Han J
    Lab Chip; 2022 Jan; 22(2):272-285. PubMed ID: 34931631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mid-infrared spectroscopy-based analysis of mammalian cell culture parameters.
    Capito F; Zimmer A; Skudas R
    Biotechnol Prog; 2015; 31(2):578-84. PubMed ID: 25504543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells.
    Figueroa B; Ailor E; Osborne D; Hardwick JM; Reff M; Betenbaugh MJ
    Biotechnol Bioeng; 2007 Jul; 97(4):877-92. PubMed ID: 17099908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of process conditions influencing protein aggregation in Chinese hamster ovary cell culture.
    Paul AJ; Handrick R; Ebert S; Hesse F
    Biotechnol Bioeng; 2018 May; 115(5):1173-1185. PubMed ID: 29280480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simple chitin-based cell culture platform for production of biopharmaceuticals.
    Kida K; Hatanaka D; Minami M; Suzuki T; Iwakami M; Kobayashi M; Hayashi H; Kawahara H; Horikawa M; Kanaki T
    Biotechnol Lett; 2023 Oct; 45(10):1265-1277. PubMed ID: 37606752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.
    Rameez S; Mostafa SS; Miller C; Shukla AA
    Biotechnol Prog; 2014; 30(3):718-27. PubMed ID: 24449637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Applications of proteomic methods for CHO host cell protein characterization in biopharmaceutical manufacturing.
    Valente KN; Levy NE; Lee KH; Lenhoff AM
    Curr Opin Biotechnol; 2018 Oct; 53():144-150. PubMed ID: 29414072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of difficult-to-remove host cell protein impurities during extended Chinese hamster ovary cell culture and their impact on continuous bioprocessing.
    Valente KN; Lenhoff AM; Lee KH
    Biotechnol Bioeng; 2015 Jun; 112(6):1232-42. PubMed ID: 25502542
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring CHO cell cultures: cell stress and early apoptosis assessment by mass spectrometry.
    Schwamb S; Munteanu B; Meyer B; Hopf C; Hafner M; Wiedemann P
    J Biotechnol; 2013 Dec; 168(4):452-61. PubMed ID: 24148184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of platform host cell protein ELISA to process-specific host cell protein ELISA.
    Gunawan F; Nishihara J; Liu P; Sandoval W; Vanderlaan M; Zhang H; Krawitz D
    Biotechnol Bioeng; 2018 Feb; 115(2):382-389. PubMed ID: 28986978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture.
    Berry BN; Dobrowsky TM; Timson RC; Kshirsagar R; Ryll T; Wiltberger K
    Biotechnol Prog; 2016; 32(1):224-34. PubMed ID: 26587969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A direct RT qPCR method for quantification of retrovirus-like particles in biopharmaceutical production with CHO cells.
    Hussain M; Rayfield WJ; Roush DJ
    J Pharm Biomed Anal; 2020 Sep; 189():113472. PubMed ID: 32693202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Batch, fed-batch, and microcarrier cultures with CHO cell lines in a pressure-cycle driven miniaturized bioreactor.
    Kim BJ; Zhao T; Young L; Zhou P; Shuler ML
    Biotechnol Bioeng; 2012 Jan; 109(1):137-45. PubMed ID: 21965160
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic modeling of Chinese hamster ovary cell culture: factors and principles.
    Tang P; Xu J; Louey A; Tan Z; Yongky A; Liang S; Li ZJ; Weng Y; Liu S
    Crit Rev Biotechnol; 2020 Mar; 40(2):265-281. PubMed ID: 31928250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of apoptosis using exosomes in Chinese hamster ovary cell culture.
    Han S; Rhee WJ
    Biotechnol Bioeng; 2018 May; 115(5):1331-1339. PubMed ID: 29337363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioreactor systems for the production of biopharmaceuticals from animal cells.
    Warnock JN; Al-Rubeai M
    Biotechnol Appl Biochem; 2006 Jul; 45(Pt 1):1-12. PubMed ID: 16764553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.