These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33724797)

  • 41. Electrical Impedance Spectroscopy of plant cells in aqueous biological buffer solutions and their modelling using a unified electrical equivalent circuit over a wide frequency range: 4Hz to 20 GHz.
    Kadan-Jamal K; Sophocleous M; Jog A; Desagani D; Teig-Sussholz O; Georgiou J; Avni A; Shacham-Diamand Y
    Biosens Bioelectron; 2020 Nov; 168():112485. PubMed ID: 32896772
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Efficiency Single-Cell Electrical Impedance Spectroscopy.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Methods Mol Biol; 2023; 2644():81-97. PubMed ID: 37142917
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Changes Over Time in the Electrode/Brain Interface Impedance: An Ex-Vivo Study.
    Iannucci L; Barbruni GL; Ghezzi D; Parvis M; Grassini S; Carrara S
    IEEE Trans Biomed Circuits Syst; 2023 Jun; 17(3):495-506. PubMed ID: 37294653
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Post-implantation impedance spectroscopy of subretinal micro-electrode arrays, OCT imaging and numerical simulation: towards a more precise neuroprosthesis monitoring tool.
    Pham P; Roux S; Matonti F; Dupont F; Agache V; Chavane F
    J Neural Eng; 2013 Aug; 10(4):046002. PubMed ID: 23723150
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RGO-PANI composite Au microelectrodes for sensitive ECIS analysis of human gastric (MKN-1) cancer cells.
    Yagati AK; Chavan SG; Baek C; Lee D; Lee MH; Min J
    Bioelectrochemistry; 2023 Apr; 150():108347. PubMed ID: 36549174
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Measurement of corneal endothelial impedance with non-invasive external electrodes--a theoretical study.
    Mandel Y; Laufer S; Rubinsky B
    Med Eng Phys; 2012 Mar; 34(2):195-201. PubMed ID: 21835678
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations.
    Rocha PR; Schlett P; Kintzel U; Mailänder V; Vandamme LK; Zeck G; Gomes HL; Biscarini F; de Leeuw DM
    Sci Rep; 2016 Oct; 6():34843. PubMed ID: 27708378
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of DNA concentration on the interfacial electrode impedance.
    Cho S; Oh Y; Ahn SM
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7291-4. PubMed ID: 24245245
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impedance spectroscopy of tripolar concentric ring electrodes with Ten20 and TD246 pastes.
    Nasrollaholhosseini SH; Herrera DS; Besio WG
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2426-2429. PubMed ID: 29060388
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New equivalent-electrical circuit model and a practical measurement method for human body impedance.
    Chinen K; Kinjo I; Zamami A; Irei K; Nagayama K
    Biomed Mater Eng; 2015; 26 Suppl 1():S779-86. PubMed ID: 26406074
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cellular impedance biosensors for drug screening and toxin detection.
    Asphahani F; Zhang M
    Analyst; 2007 Sep; 132(9):835-41. PubMed ID: 17710258
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microfluidic device for cell capture and impedance measurement.
    Jang LS; Wang MH
    Biomed Microdevices; 2007 Oct; 9(5):737-43. PubMed ID: 17508285
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A cell viability assessment method based on area-normalized impedance spectrum (ANIS).
    Zhang R; Wei M; Chen S; Li G; Zhang F; Yang N; Huang L
    Biosens Bioelectron; 2018 Jul; 110():193-200. PubMed ID: 29621718
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transparent poly(3,4-ethylenedioxythiophene)-based microelectrodes for extracellular recording.
    Flachs D; Köhler T; Thielemann C
    Biointerphases; 2018 Aug; 13(4):041008. PubMed ID: 30081642
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of electrode impedance and electrode geometry in the design of microelectrode systems.
    Zhou H; Tilton RD; White LR
    J Colloid Interface Sci; 2006 May; 297(2):819-31. PubMed ID: 16332373
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Study of human serum albumin-TiO(2) nanocrystalline electrodes interaction by impedance electrochemical spectroscopy.
    Oliva FY; Avalle LB; Macagno VA; De Pauli CP
    Biophys Chem; 2001 Jul; 91(2):141-55. PubMed ID: 11429204
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vivo impedance evaluation of Au/PI microelectrode with surface modulated by alkanethiolate self-assembled monolayers.
    Lin HL; Lin CC; Ju MS; Liao JD
    Biomed Microdevices; 2011 Feb; 13(1):243-53. PubMed ID: 20972888
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An evaluation of the impact of clinical bacterial isolates on epithelial cell monolayer integrity by the electric Cell-Substrate Impedance Sensing (ECIS) method.
    Nahid MA; Campbell CE; Fong KSK; Barnhill JC; Washington MA
    J Microbiol Methods; 2020 Feb; 169():105833. PubMed ID: 31904440
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The dependence of spectral impedance on disc microelectrode radius.
    Ahuja AK; Behrend MR; Whalen JJ; Humayun MS; Weiland JD
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1457-60. PubMed ID: 18390340
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Real-time monitoring primary cardiomyocyte adhesion based on electrochemical impedance spectroscopy and electrical cell-substrate impedance sensing.
    Qiu Y; Liao R; Zhang X
    Anal Chem; 2008 Feb; 80(4):990-6. PubMed ID: 18215019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.