These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 33724938)
1. Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis-Hastings algorithm. Liu X; Xia C; Tang Y; Tu J; Wang H Water Sci Technol; 2021 Mar; 83(5):1085-1102. PubMed ID: 33724938 [TBL] [Abstract][Full Text] [Related]
2. Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling. Dotto CB; Mannina G; Kleidorfer M; Vezzaro L; Henrichs M; McCarthy DT; Freni G; Rauch W; Deletic A Water Res; 2012 May; 46(8):2545-58. PubMed ID: 22402270 [TBL] [Abstract][Full Text] [Related]
3. Uncertainty Computation at Finite Distance in Nonlinear Mixed Effects Models-a New Method Based on Metropolis-Hastings Algorithm. Guhl M; Bertrand J; Fayette L; Mercier F; Comets E AAPS J; 2024 Apr; 26(3):53. PubMed ID: 38722435 [TBL] [Abstract][Full Text] [Related]
4. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology. Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078 [TBL] [Abstract][Full Text] [Related]
6. Searching for efficient Markov chain Monte Carlo proposal kernels. Yang Z; Rodríguez CE Proc Natl Acad Sci U S A; 2013 Nov; 110(48):19307-12. PubMed ID: 24218600 [TBL] [Abstract][Full Text] [Related]
7. Bayesian phylogeny analysis via stochastic approximation Monte Carlo. Cheon S; Liang F Mol Phylogenet Evol; 2009 Nov; 53(2):394-403. PubMed ID: 19589389 [TBL] [Abstract][Full Text] [Related]
8. A gradient Markov chain Monte Carlo algorithm for computing multivariate maximum likelihood estimates and posterior distributions: mixture dose-response assessment. Li R; Englehardt JD; Li X Risk Anal; 2012 Feb; 32(2):345-59. PubMed ID: 21906114 [TBL] [Abstract][Full Text] [Related]
9. Bayesian inference and wind field statistical modeling applied to multiple source estimation. Albani RAS; Albani VVL; Gomes LES; Migon HS; Silva Neto AJ Environ Pollut; 2023 Mar; 321():121061. PubMed ID: 36702429 [TBL] [Abstract][Full Text] [Related]
11. Uncertainty quantification and atmospheric source estimation with a discrepancy-based and a state-dependent adaptative MCMC. Albani RAS; Albani VVL; Migon HS; Silva Neto AJ Environ Pollut; 2021 Dec; 290():118039. PubMed ID: 34467885 [TBL] [Abstract][Full Text] [Related]
12. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants. Liang F; Jin IH Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562 [TBL] [Abstract][Full Text] [Related]
14. A Metropolis Monte Carlo implementation of bayesian time-domain parameter estimation: application to coupling constant estimation from antiphase multiplets. Andrec M; Prestegard JH J Magn Reson; 1998 Feb; 130(2):217-32. PubMed ID: 9500892 [TBL] [Abstract][Full Text] [Related]
15. Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers. Wedagedera JR; Afuape A; Chirumamilla SK; Momiji H; Leary R; Dunlavey M; Matthews R; Abduljalil K; Jamei M; Bois FY CPT Pharmacometrics Syst Pharmacol; 2022 Jun; 11(6):755-765. PubMed ID: 35385609 [TBL] [Abstract][Full Text] [Related]
16. Bayesian internal dosimetry calculations using Markov Chain Monte Carlo. Miller G; Martz HF; Little TT; Guilmette R Radiat Prot Dosimetry; 2002; 98(2):191-8. PubMed ID: 11926369 [TBL] [Abstract][Full Text] [Related]
17. Monte Carlo samplers for efficient network inference. Kilic Z; Schweiger M; Moyer C; Pressé S PLoS Comput Biol; 2023 Jul; 19(7):e1011256. PubMed ID: 37463156 [TBL] [Abstract][Full Text] [Related]
18. Markov chain Monte Carlo with Gaussian processes for fast parameter estimation and uncertainty quantification in a 1D fluid-dynamics model of the pulmonary circulation. Paun LM; Husmeier D Int J Numer Method Biomed Eng; 2021 Feb; 37(2):e3421. PubMed ID: 33249755 [TBL] [Abstract][Full Text] [Related]
19. A Monte Carlo method for calculating Bayesian uncertainties in internal dosimetry. Puncher M; Birchall A Radiat Prot Dosimetry; 2008; 132(1):1-12. PubMed ID: 18806256 [TBL] [Abstract][Full Text] [Related]
20. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo. Schmidt PJ; Pintar KD; Fazil AM; Topp E Risk Anal; 2013 Sep; 33(9):1677-93. PubMed ID: 23311599 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]