BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3372498)

  • 1. One-electron reduction of hepatic NADH-cytochrome b5 reductase as studied by pulse radiolysis.
    Kobayashi K; Iyanagi T; Ohara H; Hayashi K
    J Biol Chem; 1988 Jun; 263(16):7493-9. PubMed ID: 3372498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-electron oxidation-reduction properties of hepatic NADH-cytochrome b5 reductase.
    Iyanagi T; Watanabe S; Anan KF
    Biochemistry; 1984 Mar; 23(7):1418-25. PubMed ID: 6326802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer.
    Meyer TE; Shirabe K; Yubisui T; Takeshita M; Bes MT; Cusanovich MA; Tollin G
    Arch Biochem Biophys; 1995 Apr; 318(2):457-64. PubMed ID: 7733677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Thr(66) in porcine NADH-cytochrome b5 reductase in catalysis and control of the rate-limiting step in electron transfer.
    Kimura S; Kawamura M; Iyanagi T
    J Biol Chem; 2003 Feb; 278(6):3580-9. PubMed ID: 12459552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of NADPH-adrenodoxin reductase with NADP+ as studied by pulse radiolysis.
    Kobayashi K; Miura S; Miki M; Ichikawa Y; Tagawa S
    Biochemistry; 1995 Oct; 34(40):12932-6. PubMed ID: 7548051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox properties of microsomal reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase and cytochrome b5.
    Iyanagi T
    Biochemistry; 1977 Jun; 16(12):2725-30. PubMed ID: 19038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic behavior of the monodehydroascorbate radical studied by pulse radiolysis.
    Kobayashi K; Harada Y; Hayashi K
    Biochemistry; 1991 Aug; 30(34):8310-5. PubMed ID: 1883818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-electron reduction of D-amino acid oxidase. Kinetics of conversion from the red semiquinone to the blue semiquinone.
    Kobayashi K; Hirota K; Ohara H; Hayashi K; Miura R; Yamano T
    Biochemistry; 1983 Apr; 22(9):2239-43. PubMed ID: 6134550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of Cibacron blue F3GA to the flavin and NADH sites in cytochrome b5 reductase.
    Pompon D; Guiard B; Lederer F
    Eur J Biochem; 1980 Sep; 110(2):565-70. PubMed ID: 7439174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of cysteine residues in human NADH-cytochrome b5 reductase studied by site-directed mutagenesis. Cys-273 and Cys-283 are located close to the NADH-binding site but are not catalytically essential.
    Shirabe K; Yubisui T; Nishino T; Takeshita M
    J Biol Chem; 1991 Apr; 266(12):7531-6. PubMed ID: 2019583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic and kinetic characterization of the recombinant cytochrome c reductase fragment of nitrate reductase. Identification of the rate-limiting catalytic step.
    Ratnam K; Shiraishi N; Campbell WH; Hille R
    J Biol Chem; 1997 Jan; 272(4):2122-8. PubMed ID: 8999912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous purification and characterization of cytochrome b5 reductase and cytochrome b5 from sheep liver.
    Arinç E; Cakir D
    Int J Biochem Cell Biol; 1999 Feb; 31(2):345-62. PubMed ID: 10216966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A direct demonstration of the catalytic action of monodehydroascorbate reductase by pulse radiolysis.
    Kobayashi K; Tagawa S; Sano S; Asada K
    J Biol Chem; 1995 Nov; 270(46):27551-4. PubMed ID: 7499215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purified liver microsomal NADPH-cytochrome P-450 reductase. Spectral characterization of oxidation-reduction states.
    Vermilion JL; Coon MJ
    J Biol Chem; 1978 Apr; 253(8):2694-704. PubMed ID: 632295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of flavin-binding motif amino acid mutations in the NADH-cytochrome b5 reductase catalytic domain on protein stability and catalysis.
    Kimura S; Nishida H; Iyanagi T
    J Biochem; 2001 Oct; 130(4):481-90. PubMed ID: 11574067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterisation of the NADH:acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2.
    Shaw JP; Harayama S
    Eur J Biochem; 1992 Oct; 209(1):51-61. PubMed ID: 1327782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-flash-photolysis studies of p-cresol methylhydroxylase. Electron-transfer properties of the flavin and haem components.
    Bhattacharyya A; Tollin G; McIntire W; Singer TP
    Biochem J; 1985 Jun; 228(2):337-45. PubMed ID: 2990445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation-reduction properties of Escherichia coli thioredoxin reductase altered at each active site cysteine residue.
    Prongay AJ; Williams CH
    J Biol Chem; 1992 Dec; 267(35):25181-8. PubMed ID: 1460018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the role of lysine 110 of NADH-cytochrome b5 reductase in the binding and oxidation of NADH by site-directed mutagenesis.
    Strittmatter P; Kittler JM; Coghill JE
    J Biol Chem; 1992 Oct; 267(28):20164-7. PubMed ID: 1400335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.