These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33725026)

  • 1. Molecular dynamics study on characteristics of reflection and condensation molecules at vapor-liquid equilibrium state.
    Tabe H; Kobayashi K; Fujii H; Watanabe M
    PLoS One; 2021; 16(3):e0248660. PubMed ID: 33725026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonequilibrium kinetic boundary condition at the vapor-liquid interface of argon.
    Ishiyama T; Fujikawa S; Kurz T; Lauterborn W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042406. PubMed ID: 24229188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface.
    Nagayama G; Takematsu M; Mizuguchi H; Tsuruta T
    J Chem Phys; 2015 Jul; 143(1):014706. PubMed ID: 26156491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study on evaporation and condensation of n-dodecane at liquid-vapor phase equilibria.
    Cao BY; Xie JF; Sazhin SS
    J Chem Phys; 2011 Apr; 134(16):164309. PubMed ID: 21528962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaporation coefficient and condensation coefficient of vapor under high gas pressure conditions.
    Ohashi K; Kobayashi K; Fujii H; Watanabe M
    Sci Rep; 2020 May; 10(1):8143. PubMed ID: 32424295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic boundary condition at a vapor-liquid interface.
    Ishiyama T; Yano T; Fujikawa S
    Phys Rev Lett; 2005 Aug; 95(8):084504. PubMed ID: 16196864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal transport across the interface between liquid n-dodecane and its own vapor: A molecular dynamics study.
    Bird E; Gutierrez Plascencia J; Liang Z
    J Chem Phys; 2020 May; 152(18):184701. PubMed ID: 32414243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport phenomena in the Knudsen layer near an evaporating surface.
    Bird E; Liang Z
    Phys Rev E; 2019 Oct; 100(4-1):043108. PubMed ID: 31770887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the temperature profile across a liquid-vapor interface upon phase change.
    Rokoni A; Sun Y
    J Chem Phys; 2020 Oct; 153(14):144706. PubMed ID: 33086805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaporation of Lennard-Jones fluids.
    Cheng S; Lechman JB; Plimpton SJ; Grest GS
    J Chem Phys; 2011 Jun; 134(22):224704. PubMed ID: 21682530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Organic Surface Contamination on the Mass Accommodation Coefficient of Water: A Molecular Dynamics Study.
    Hartfield J; Bird E; Liang Z
    J Phys Chem B; 2024 Jan; 128(2):585-595. PubMed ID: 38175820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximum evaporating flux of molecular fluids from a planar liquid surface.
    Bird E; Liang Z
    Phys Rev E; 2020 Oct; 102(4-1):043102. PubMed ID: 33212695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation.
    Zhakhovsky VV; Kryukov AP; Levashov VY; Shishkova IN; Anisimov SI
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18209-18217. PubMed ID: 29666235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A steady-state non-equilibrium molecular dynamics approach for the study of evaporation processes.
    Zhang J; Müller-Plathe F; Yahia-Ouahmed M; Leroy F
    J Chem Phys; 2013 Oct; 139(13):134701. PubMed ID: 24116576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow Condensation Heat Transfer Characteristics of Nanochannels with Nanopillars: A Molecular Dynamics Study.
    Wang M; Sun H; Cheng L
    Langmuir; 2021 Dec; 37(50):14744-14752. PubMed ID: 34813700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations.
    Lin ST; Maiti PK; Goddard WA
    J Phys Chem B; 2010 Jun; 114(24):8191-8. PubMed ID: 20504009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or nanochannel: heat flux predictions using combined molecular dynamics and Monte Carlo techniques.
    Nedea SV; van Steenhoven AA; Markvoort AJ; Spijker P; Giordano D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053012. PubMed ID: 25353885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of the liquid-vapor interface of acetone-methanol mixtures, as seen from computer simulation and ITIM surface analysis.
    Idrissi A; Hantal G; Jedlovszky P
    Phys Chem Chem Phys; 2015 Apr; 17(14):8913-26. PubMed ID: 25746419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting kinetic boundary conditions at the surface of fuel droplet hydrocarbons: An atomistic computational fluid dynamics simulation.
    Nasiri R
    Sci Rep; 2016 May; 6():25572. PubMed ID: 27215897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.