These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33725068)

  • 1. Self-assembly of polymer-tethered nanoparticles with uniform and Janus surfaces in nanotubes.
    Sato T; Kobayashi Y; Michioka T; Arai N
    Soft Matter; 2021 Apr; 17(15):4047-4058. PubMed ID: 33725068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chemical design of grafted polymers on the self-assembled morphology of polymer-tethered nanoparticles in nanotubes.
    Sato T; Kobayashi Y; Arai N
    J Phys Condens Matter; 2021 Jul; 33(36):. PubMed ID: 34157689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of Janus nanoparticles with a hydrophobic hemisphere in nanotubes.
    Kobayashi Y; Arai N
    Soft Matter; 2016 Jan; 12(2):378-85. PubMed ID: 26497536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembly of Triblock Janus Nanoparticle in Nanotube.
    Arai N; Yausoka K; Zeng XC
    J Chem Theory Comput; 2013 Jan; 9(1):179-87. PubMed ID: 26589021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulation study on the self-assembly of unimodal and bimodal polymer-grafted nanoparticles in a polymer melt.
    Shi R; Qian HJ; Lu ZY
    Phys Chem Chem Phys; 2017 Jun; 19(25):16524-16532. PubMed ID: 28612884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating Polymer Transformation during the Encapsulation of Metal Nanoparticles by Polystyrene-
    Song X; Liu C; Liu X; Liu S
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3969-3975. PubMed ID: 31867959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic Self-Assembly of Hairy Inorganic Nanoparticles.
    Yi C; Zhang S; Webb KT; Nie Z
    Acc Chem Res; 2017 Jan; 50(1):12-21. PubMed ID: 27997119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Janus or homogeneous nanoparticle mediated self-assembly of polymer electrolyte fuel cell membranes.
    Kobayashi Y; Arai N
    RSC Adv; 2018 May; 8(33):18568-18575. PubMed ID: 35541113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of tether number and location on the self-assembly of polymer-tethered nanorods.
    Zhao L; Xue XG; Lu ZY; Li ZS
    J Mol Model; 2011 Nov; 17(11):3005-13. PubMed ID: 21360177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress-strain behavior of block-copolymers and their nanocomposites filled with uniform or Janus nanoparticles under shear: a molecular dynamics simulation.
    Wang L; Liu H; Li F; Shen J; Zheng Z; Gao Y; Liu J; Wu Y; Zhang L
    Phys Chem Chem Phys; 2016 Oct; 18(39):27232-27244. PubMed ID: 27711642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer directed aggregation and dispersion of anisotropic nanoparticles.
    Patra TK; Singh JK
    Soft Matter; 2014 Mar; 10(11):1823-30. PubMed ID: 24652389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural properties of polymer-brush-grafted gold nanoparticles at the oil-water interface: insights from coarse-grained simulations.
    Quan X; Peng C; Dong J; Zhou J
    Soft Matter; 2016 Apr; 12(14):3352-9. PubMed ID: 26954721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt-mediated kinetics of the self-assembly of gold nanorods end-tethered with polymer ligands.
    Liu K; Resetco C; Kumacheva E
    Nanoscale; 2012 Oct; 4(20):6574-80. PubMed ID: 22975762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphiphilic Janus gold nanoparticles via combining "solid-state grafting-to" and "grafting-from" methods.
    Wang B; Li B; Zhao B; Li CY
    J Am Chem Soc; 2008 Sep; 130(35):11594-5. PubMed ID: 18693735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double-Layered Plasmonic-Magnetic Vesicles by Self-Assembly of Janus Amphiphilic Gold-Iron(II,III) Oxide Nanoparticles.
    Song J; Wu B; Zhou Z; Zhu G; Liu Y; Yang Z; Lin L; Yu G; Zhang F; Zhang G; Duan H; Stucky GD; Chen X
    Angew Chem Int Ed Engl; 2017 Jul; 56(28):8110-8114. PubMed ID: 28557263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing amphiphilic Janus nanoparticles with tunable lipid raft affinity
    Lin X; Lin X
    Biomater Sci; 2021 Dec; 9(24):8249-8258. PubMed ID: 34757373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model for reversible nanoparticle assembly in a polymer matrix.
    Rahedi AJ; Douglas JF; Starr FW
    J Chem Phys; 2008 Jan; 128(2):024902. PubMed ID: 18205470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Design of a Janus-Nanoparticle-Based Sandwich Assay for Nucleic Acids.
    Sato T; Esashika K; Yamamoto E; Saiki T; Arai N
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing Superlattice Structure via Self-Assembly of One-Component Polymer-Grafted Nanoparticles.
    Hou G; Xia X; Liu J; Wang W; Dong M; Zhang L
    J Phys Chem B; 2019 Mar; 123(9):2157-2168. PubMed ID: 30742436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of elongational flow on immiscible polymer blend/nanoparticle composites: a molecular dynamics study.
    Shebert GL; Lak Joo Y
    Soft Matter; 2016 Jul; 12(28):6132-40. PubMed ID: 27356215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.