BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33725073)

  • 1. Promiscuous dye binding by a light-up aptamer: application for label-free multi-wavelength biosensing.
    Connelly RP; Madalozzo PF; Mordeson JE; Pratt AD; Gerasimova YV
    Chem Commun (Camb); 2021 Apr; 57(30):3672-3675. PubMed ID: 33725073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Split Dapoxyl Aptamer for Sequence-Selective Analysis of Nucleic Acid Sequence Based Amplification Amplicons.
    Kikuchi N; Reed A; Gerasimova YV; Kolpashchikov DM
    Anal Chem; 2019 Feb; 91(4):2667-2671. PubMed ID: 30680988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel strategy to improve the sensing performances of split ATP aptamer based fluorescent indicator displacement assay through enhanced molecular recognition.
    Ma Y; Geng F; Wang Y; Xu M; Shao C; Qu P; Zhang Y; Ye B
    Biosens Bioelectron; 2019 Jun; 134():36-41. PubMed ID: 30954924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Label-Free Aptasensor for Ochratoxin a Detection Based on the Structure Switch of Aptamer.
    Liu F; Ding A; Zheng J; Chen J; Wang B
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29857594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binary (Split) Light-up Aptameric Sensors.
    Kolpashchikov DM; Spelkov AA
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):4988-4999. PubMed ID: 32208549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrocyclic host-dye reporter for sensitive sandwich-type fluorescent aptamer sensor.
    Yang C; Spinelli N; Perrier S; Defrancq E; Peyrin E
    Anal Chem; 2015 Mar; 87(6):3139-43. PubMed ID: 25738735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-up Hoechst-DNA aptamer pair: generation of an aptamer-selective fluorophore from a conventional DNA-staining dye.
    Sando S; Narita A; Aoyama Y
    Chembiochem; 2007 Oct; 8(15):1795-803. PubMed ID: 17806095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. G-quadruplex specific thioflavin T-based label-free fluorescence aptasensor for rapid detection of tetracycline.
    Dai Y; Zhang Y; Liao W; Wang W; Wu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Sep; 238():118406. PubMed ID: 32387918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile label-free G-quadruplex based fluorescent aptasensor method for rapid detection of ATP.
    Liu H; Ma C; Ning F; Chen H; He H; Wang K; Wang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():164-167. PubMed ID: 28038373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection and characterization of dimethylindole red DNA aptamers for the development of light-up fluorescent probes.
    Wang H; Wang J; Wang Q; Chen X; Liu M; Chen H; Pei R
    Talanta; 2017 Jun; 168():217-221. PubMed ID: 28391845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-up fluorophore--DNA aptamer pair for label-free turn-on aptamer sensors.
    Kato T; Shimada I; Kimura R; Hyuga M
    Chem Commun (Camb); 2016 Mar; 52(21):4041-4. PubMed ID: 26891088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sandwich-type electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C
    Chen Y; Liu X; Guo S; Cao J; Zhou J; Zuo J; Bai L
    Biomaterials; 2019 Sep; 216():119253. PubMed ID: 31202103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Detection of KatG 315 gene mutation associated with isoniazid resistance in Mycobacterium tuberculosis by template-directed dye-terminator incorporation with fluorescence polarization detection technology].
    Wang Y; Zhang WH; Zhao JR; Luo M; Zhang ZX; Bai YJ; Yan XJ
    Zhonghua Jie He He Hu Xi Za Zhi; 2004 Mar; 27(3):179-82. PubMed ID: 15130329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorescent aptasensor for Staphylococcus aureus based on strand displacement amplification and self-assembled DNA hexagonal structure.
    Cai R; Yin F; Chen H; Tian Y; Zhou N
    Mikrochim Acta; 2020 Apr; 187(5):304. PubMed ID: 32350613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence Anisotropy-Based Signal-Off and Signal-On Aptamer Assays Using Lissamine Rhodamine B as a Label for Ochratoxin A.
    Li Y; Zhang N; Wang H; Zhao Q
    J Agric Food Chem; 2020 Apr; 68(14):4277-4283. PubMed ID: 32182058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A transcription aptasensor: amplified, label-free and culture-independent detection of foodborne pathogens via light-up RNA aptamers.
    Sheng L; Lu Y; Deng S; Liao X; Zhang K; Ding T; Gao H; Liu D; Deng R; Li J
    Chem Commun (Camb); 2019 Aug; 55(68):10096-10099. PubMed ID: 31380872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile conversion of RNA aptamers to modular fluorescent sensors with tunable detection wavelengths.
    Nakano S; Nakata E; Morii T
    Bioorg Med Chem Lett; 2011 Aug; 21(15):4503-6. PubMed ID: 21719284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free aptamer-based sensor using abasic site-containing DNA and a nucleobase-specific fluorescent ligand.
    Xu Z; Morita K; Sato Y; Dai Q; Nishizawa S; Teramae N
    Chem Commun (Camb); 2009 Nov; (42):6445-7. PubMed ID: 19841804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly sensitive analysis of tetrodotoxin based on free-label fluorescence aptamer sensing system.
    Lan Y; Qin G; Wei Y; Dong C; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():411-418. PubMed ID: 31059893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile label-free aptasensor for detecting ATP based on fluorescence enhancement of poly(thymine)-templated copper nanoparticles.
    Zhou SS; Zhang L; Cai QY; Dong ZZ; Geng X; Ge J; Li ZH
    Anal Bioanal Chem; 2016 Sep; 408(24):6711-7. PubMed ID: 27457102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.