BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 33725183)

  • 1. Deep learning-based high-throughput phenotyping can drive future discoveries in plant reproductive biology.
    Warman C; Fowler JE
    Plant Reprod; 2021 Jun; 34(2):81-89. PubMed ID: 33725183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maize-IAS: a maize image analysis software using deep learning for high-throughput plant phenotyping.
    Zhou S; Chai X; Yang Z; Wang H; Yang C; Sun T
    Plant Methods; 2021 Apr; 17(1):48. PubMed ID: 33926480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image-based cell phenotyping with deep learning.
    Pratapa A; Doron M; Caicedo JC
    Curr Opin Chem Biol; 2021 Dec; 65():9-17. PubMed ID: 34023800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer vision-based phenotyping for improvement of plant productivity: a machine learning perspective.
    Mochida K; Koda S; Inoue K; Hirayama T; Tanaka S; Nishii R; Melgani F
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30520975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cost-effective maize ear phenotyping platform enables rapid categorization and quantification of kernels.
    Warman C; Sullivan CM; Preece J; Buchanan ME; Vejlupkova Z; Jaiswal P; Fowler JE
    Plant J; 2021 Apr; 106(2):566-579. PubMed ID: 33476427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture.
    Gaggion N; Ariel F; Daric V; Lambert É; Legendre S; Roulé T; Camoirano A; Milone DH; Crespi M; Blein T; Ferrante E
    Gigascience; 2021 Jul; 10(7):. PubMed ID: 34282452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explainable Deep Learning Reproduces a 'Professional Eye' on the Diagnosis of Internal Disorders in Persimmon Fruit.
    Akagi T; Onishi M; Masuda K; Kuroki R; Baba K; Takeshita K; Suzuki T; Niikawa T; Uchida S; Ise T
    Plant Cell Physiol; 2020 Dec; 61(11):1967-1973. PubMed ID: 32845307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning for Image Analysis: Leaf Disease Segmentation.
    F Danilevicz M; Bayer PE
    Methods Mol Biol; 2022; 2443():429-449. PubMed ID: 35037219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-feature data repository development and analytics for image cosegmentation in high-throughput plant phenotyping.
    Quiñones R; Munoz-Arriola F; Choudhury SD; Samal A
    PLoS One; 2021; 16(9):e0257001. PubMed ID: 34473794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat.
    Wang X; Xuan H; Evers B; Shrestha S; Pless R; Poland J
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31742599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperspectral Technique Combined With Deep Learning Algorithm for Prediction of Phenotyping Traits in Lettuce.
    Yu S; Fan J; Lu X; Wen W; Shao S; Guo X; Zhao C
    Front Plant Sci; 2022; 13():927832. PubMed ID: 35845657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Medical Image Processing.
    Huang Z; Li Q; Lu J; Feng J; Hu J; Chen P
    Acta Cytol; 2021; 65(4):310-323. PubMed ID: 33176311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What machine learning can do for developmental biology.
    Villoutreix P
    Development; 2021 Jan; 148(1):. PubMed ID: 33431591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. If deep learning is the answer, what is the question?
    Saxe A; Nelli S; Summerfield C
    Nat Rev Neurosci; 2021 Jan; 22(1):55-67. PubMed ID: 33199854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comprehensive Review of High Throughput Phenotyping and Machine Learning for Plant Stress Phenotyping.
    Gill T; Gill SK; Saini DK; Chopra Y; de Koff JP; Sandhu KS
    Phenomics; 2022 Jun; 2(3):156-183. PubMed ID: 36939773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives.
    Singh AK; Ganapathysubramanian B; Sarkar S; Singh A
    Trends Plant Sci; 2018 Oct; 23(10):883-898. PubMed ID: 30104148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A photometric stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth.
    Bernotas G; Scorza LCT; Hansen MF; Hales IJ; Halliday KJ; Smith LN; Smith ML; McCormick AJ
    Gigascience; 2019 May; 8(5):. PubMed ID: 31127811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning is widely applicable to phenotyping embryonic development and disease.
    Naert T; Çiçek Ö; Ogar P; Bürgi M; Shaidani NI; Kaminski MM; Xu Y; Grand K; Vujanovic M; Prata D; Hildebrandt F; Brox T; Ronneberger O; Voigt FF; Helmchen F; Loffing J; Horb ME; Willsey HR; Lienkamp SS
    Development; 2021 Nov; 148(21):. PubMed ID: 34739029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological network analysis with deep learning.
    Muzio G; O'Bray L; Borgwardt K
    Brief Bioinform; 2021 Mar; 22(2):1515-1530. PubMed ID: 33169146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.