BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 33725364)

  • 1. Iron(II)-Catalyzed Aerobic Biomimetic Oxidation of Amines using a Hybrid Hydroquinone/Cobalt Catalyst as Electron Transfer Mediator.
    Guðmundsson A; Manna S; Bäckvall JE
    Angew Chem Int Ed Engl; 2021 May; 60(21):11819-11823. PubMed ID: 33725364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system.
    Samec JS; Ell AH; Bäckvall JE
    Chemistry; 2005 Apr; 11(8):2327-34. PubMed ID: 15706621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron(II)-Catalyzed Aerobic Biomimetic Oxidation of N-Heterocycles.
    Manna S; Kong WJ; Bäckvall JE
    Chemistry; 2021 Oct; 27(55):13725-13729. PubMed ID: 34324754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of new hybrid hydroquinone/cobalt Schiff base catalysts: efficient electron-transfer mediators in aerobic oxidation.
    Purse BW; Tran LH; Piera J; Akermark B; Bäckvall JE
    Chemistry; 2008; 14(25):7500-3. PubMed ID: 18604855
    [No Abstract]   [Full Text] [Related]  

  • 5. Iron(II)-Catalyzed Biomimetic Aerobic Oxidation of Alcohols.
    Guðmundsson A; Schlipköter KE; Bäckvall JE
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5403-5406. PubMed ID: 31999013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of cobalt(II) Schiff base complexes on polystyrene resin and a study of their catalytic activity for the aerobic oxidation of alcohols.
    Jain S; Reiser O
    ChemSusChem; 2008; 1(6):534-41. PubMed ID: 18702152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-catalyzed direct synthesis of imines from amines or alcohols and amines via aerobic oxidative reactions under air.
    Zhang E; Tian H; Xu S; Yu X; Xu Q
    Org Lett; 2013 Jun; 15(11):2704-7. PubMed ID: 23683112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient ruthenium-catalyzed aerobic oxidation of alcohols using a biomimetic coupled catalytic system.
    Csjernyik G; Ell AH; Fadini L; Pugin B; Bäckvall JE
    J Org Chem; 2002 Mar; 67(5):1657-62. PubMed ID: 11871899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox inactive metal ion triggered N-dealkylation by an iron catalyst with dioxygen activation: a lesson from lipoxygenases.
    Zhang J; Wang Y; Luo N; Chen Z; Wu K; Yin G
    Dalton Trans; 2015 Jun; 44(21):9847-59. PubMed ID: 25939391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic Hydrogen Evolution from Plastoquinol Analogues as a Potential Functional Model of Photosystem I.
    Hong YH; Lee YM; Nam W; Fukuzumi S
    Inorg Chem; 2020 Oct; 59(20):14838-14846. PubMed ID: 33023288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-independent catalytic two-electron reduction of dioxygen by ferrocenes with a copper(II) tris[2-(2-pyridyl)ethyl]amine catalyst in the presence of perchloric acid.
    Das D; Lee YM; Ohkubo K; Nam W; Karlin KD; Fukuzumi S
    J Am Chem Soc; 2013 Feb; 135(7):2825-34. PubMed ID: 23394287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalt- and iron-catalyzed redox condensation of o-substituted nitrobenzenes with alkylamines: a step- and redox-economical synthesis of diazaheterocycles.
    Nguyen TB; Bescont JL; Ermolenko L; Al-Mourabit A
    Org Lett; 2013 Dec; 15(24):6218-21. PubMed ID: 24228936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphite-supported gold nanoparticles as efficient catalyst for aerobic oxidation of benzylic amines to imines and N-substituted 1,2,3,4-tetrahydroisoquinolines to amides: synthetic applications and mechanistic study.
    So MH; Liu Y; Ho CM; Che CM
    Chem Asian J; 2009 Oct; 4(10):1551-61. PubMed ID: 19777526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron-catalyzed synthesis of secondary amines: on the way to green reductive aminations.
    Stemmler T; Surkus AE; Pohl MM; Junge K; Beller M
    ChemSusChem; 2014 Nov; 7(11):3012-6. PubMed ID: 25196429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic catalytic systems inspired by copper amine oxidases: recent developments and synthetic applications.
    Largeron M
    Org Biomol Chem; 2017 Jun; 15(22):4722-4730. PubMed ID: 28474720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer Hydrogenation of Vinyl Arenes and Aryl Acetylenes with Ammonia Borane Catalyzed by Schiff Base Cobalt(II) Complexes.
    Skrodzki M; Zaranek M; Consiglio G; Pawluć P
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Aerobic Dehydrogenation of Nitrogen Heterocycles Using Heterogeneous Cobalt Oxide Supported on Nitrogen-Doped Carbon.
    Iosub AV; Stahl SS
    Org Lett; 2015 Sep; 17(18):4404-7. PubMed ID: 26333043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavin catalyzed oxidations of sulfides and amines with molecular oxygen.
    Imada Y; Iida H; Ono S; Murahashi S
    J Am Chem Soc; 2003 Mar; 125(10):2868-9. PubMed ID: 12617641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermolecular aerobic oxidative allylic amination of simple alkenes with diarylamines catalyzed by the Pd(OCOCF3)2/NPMoV/O2 system.
    Shimizu Y; Obora Y; Ishii Y
    Org Lett; 2010 Mar; 12(6):1372-4. PubMed ID: 20158264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmentally friendly chemoselective oxidation of primary aliphatic amines by using a biomimetic electrocatalytic system.
    Largeron M; Chiaroni A; Fleury MB
    Chemistry; 2008; 14(3):996-1003. PubMed ID: 17992680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.