These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33725370)

  • 1. Sirtuin 2 Regulates Protein LactoylLys Modifications.
    Jennings EQ; Ray JD; Zerio CJ; Trujillo MN; McDonald DM; Chapman E; Spiegel DA; Galligan JJ
    Chembiochem; 2021 Jun; 22(12):2102-2106. PubMed ID: 33725370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-enzymatic Lysine Lactoylation of Glycolytic Enzymes.
    Gaffney DO; Jennings EQ; Anderson CC; Marentette JO; Shi T; Schou Oxvig AM; Streeter MD; Johannsen M; Spiegel DA; Chapman E; Roede JR; Galligan JJ
    Cell Chem Biol; 2020 Feb; 27(2):206-213.e6. PubMed ID: 31767537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIRT2 Reverses 4-Oxononanoyl Lysine Modification on Histones.
    Jin J; He B; Zhang X; Lin H; Wang Y
    J Am Chem Soc; 2016 Sep; 138(38):12304-7. PubMed ID: 27610633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of 'erasers' for lysine crotonylated histone marks using a chemical proteomics approach.
    Bao X; Wang Y; Li X; Li XM; Liu Z; Yang T; Wong CF; Zhang J; Hao Q; Li XD
    Elife; 2014 Nov; 3():. PubMed ID: 25369635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infection Reveals a Modification of SIRT2 Critical for Chromatin Association.
    Pereira JM; Chevalier C; Chaze T; Gianetto Q; Impens F; Matondo M; Cossart P; Hamon MA
    Cell Rep; 2018 Apr; 23(4):1124-1137. PubMed ID: 29694890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A possible S-glutathionylation of specific proteins by glyoxalase II: An in vitro and in silico study.
    Ercolani L; Scirè A; Galeazzi R; Massaccesi L; Cianfruglia L; Amici A; Piva F; Urbanelli L; Emiliani C; Principato G; Armeni T
    Cell Biochem Funct; 2016 Dec; 34(8):620-627. PubMed ID: 27935136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical genesis of enzymatic and non-enzymatic post-translational modifications.
    Jennings EQ; Fritz KS; Galligan JJ
    Mol Aspects Med; 2022 Aug; 86():101053. PubMed ID: 34838336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SIRT2 deacetylase regulates the activity of GSK3 isoforms independent of inhibitory phosphorylation.
    Sarikhani M; Mishra S; Maity S; Kotyada C; Wolfgeher D; Gupta MP; Singh M; Sundaresan NR
    Elife; 2018 Mar; 7():. PubMed ID: 29504933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone Ketoamide Adduction by 4-Oxo-2-nonenal Is a Reversible Posttranslational Modification Regulated by Sirt2.
    Cui Y; Li X; Lin J; Hao Q; Li XD
    ACS Chem Biol; 2017 Jan; 12(1):47-51. PubMed ID: 28103679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a.
    Jing H; Zhang X; Wisner SA; Chen X; Spiegelman NA; Linder ME; Lin H
    Elife; 2017 Dec; 6():. PubMed ID: 29239724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ERK1/2 regulates SIRT2 deacetylase activity.
    Choi YH; Kim H; Lee SH; Jin YH; Lee KY
    Biochem Biophys Res Commun; 2013 Jul; 437(2):245-9. PubMed ID: 23806683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dicarbonyl derived post-translational modifications: chemistry bridging biology and aging-related disease.
    Sibbersen C; Johannsen M
    Essays Biochem; 2020 Feb; 64(1):97-110. PubMed ID: 31939602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIRT2 deacetylates GRASP55 to facilitate post-mitotic Golgi assembly.
    Zhang X; Brachner A; Kukolj E; Slade D; Wang Y
    J Cell Sci; 2019 Nov; 132(21):. PubMed ID: 31604796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Probes Reveal Sirt2's New Function as a Robust "Eraser" of Lysine Lipoylation.
    Xie Y; Chen L; Wang R; Wang J; Li J; Xu W; Li Y; Yao SQ; Zhang L; Hao Q; Sun H
    J Am Chem Soc; 2019 Nov; 141(46):18428-18436. PubMed ID: 31644285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An emerging field: Post-translational modification in microbiome.
    Duan H; Zhang X; Figeys D
    Proteomics; 2023 Feb; 23(3-4):e2100389. PubMed ID: 36239139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Src regulates the activity of SIRT2.
    Choi YH; Kim H; Lee SH; Jin YH; Lee KY
    Biochem Biophys Res Commun; 2014 Jul; 450(2):1120-5. PubMed ID: 24996174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glyoxalase biochemistry.
    Honek JF
    Biomol Concepts; 2015 Dec; 6(5-6):401-14. PubMed ID: 26552067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crucial Roles for SIRT2 and AMPA Receptor Acetylation in Synaptic Plasticity and Memory.
    Wang G; Li S; Gilbert J; Gritton HJ; Wang Z; Li Z; Han X; Selkoe DJ; Man HY
    Cell Rep; 2017 Aug; 20(6):1335-1347. PubMed ID: 28793258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sirtuins 1 and 2 Are Universal Histone Deacetylases.
    Hsu WW; Wu B; Liu WR
    ACS Chem Biol; 2016 Mar; 11(3):792-9. PubMed ID: 26820517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sirtuin 2 mutations in human cancers impair its function in genome maintenance.
    Head PE; Zhang H; Bastien AJ; Koyen AE; Withers AE; Daddacha WB; Cheng X; Yu DS
    J Biol Chem; 2017 Jun; 292(24):9919-9931. PubMed ID: 28461331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.