BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

734 related articles for article (PubMed ID: 33725419)

  • 1. Aqueous Rechargeable Zn-ion Batteries: Strategies for Improving the Energy Storage Performance.
    Mallick S; Raj CR
    ChemSusChem; 2021 May; 14(9):1987-2022. PubMed ID: 33725419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Performance of Aqueous Zinc-ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress.
    Ho VC; Lim H; Kim MJ; Mun J
    Chem Asian J; 2022 Jul; 17(14):e202200289. PubMed ID: 35546083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress on Zinc-Ion Rechargeable Batteries.
    Xu W; Wang Y
    Nanomicro Lett; 2019 Oct; 11(1):90. PubMed ID: 34138036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries.
    Huang S; Zhu J; Tian J; Niu Z
    Chemistry; 2019 Nov; 25(64):14480-14494. PubMed ID: 31407398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zn-Based Deep Eutectic Solvent as the Stabilizing Electrolyte for Zn Metal Anode in Rechargeable Aqueous Batteries.
    Thorat GM; Ho VC; Mun J
    Front Chem; 2021; 9():825807. PubMed ID: 35096781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-Cation Electrolyte for a 1.7 V Aqueous Zn Ion Battery.
    Li N; Li G; Li C; Yang H; Qin G; Sun X; Li F; Cheng HM
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13790-13796. PubMed ID: 32108465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-Boosted, High-Performance Aqueous Zn-Ion Battery.
    Shen C; Li X; Li N; Xie K; Wang JG; Liu X; Wei B
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25446-25453. PubMed ID: 29979565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance reversible aqueous Zinc-Ion battery based on Zn
    Jing F; Pei J; Zhou Y; Shang Y; Yao S; Liu S; Chen G
    J Colloid Interface Sci; 2022 Mar; 609():557-565. PubMed ID: 34802771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual Porous 3D Zinc Anodes toward Dendrite-Free and Long Cycle Life Zinc-Ion Batteries.
    Chen K; Guo H; Li W; Wang Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):54990-54996. PubMed ID: 34767331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Aqueous Zinc-Ion Battery Based on Layered H
    He P; Quan Y; Xu X; Yan M; Yang W; An Q; He L; Mai L
    Small; 2017 Dec; 13(47):. PubMed ID: 29152849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives.
    Wang T; Li C; Xie X; Lu B; He Z; Liang S; Zhou J
    ACS Nano; 2020 Dec; 14(12):16321-16347. PubMed ID: 33314908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Materials chemistry for rechargeable zinc-ion batteries.
    Zhang N; Chen X; Yu M; Niu Z; Cheng F; Chen J
    Chem Soc Rev; 2020 Jul; 49(13):4203-4219. PubMed ID: 32478772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc-Based Batteries.
    Chen P; Yuan X; Xia Y; Zhang Y; Fu L; Liu L; Yu N; Huang Q; Wang B; Hu X; Wu Y; van Ree T
    Adv Sci (Weinh); 2021 Jun; 8(11):e2100309. PubMed ID: 34105273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A High-Energy and Long-Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn
    Hou Z; Dong M; Xiong Y; Zhang X; Ao H; Liu M; Zhu Y; Qian Y
    Small; 2020 Jul; 16(26):e2001228. PubMed ID: 32510836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress in Aqueous Zinc-Ion Batteries: From FundamentalScience to Structure Design.
    Wang T; Zhang Y; You J; Hu F
    Chem Rec; 2023 May; 23(5):e202200309. PubMed ID: 36974578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast Rechargeable Zinc Battery Based on High-Voltage Graphite Cathode and Stable Nonaqueous Electrolyte.
    Zhang N; Dong Y; Wang Y; Wang Y; Li J; Xu J; Liu Y; Jiao L; Cheng F
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32978-32986. PubMed ID: 31418545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode.
    Xia C; Guo J; Li P; Zhang X; Alshareef HN
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):3943-3948. PubMed ID: 29432667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A carbonyl-rich covalent organic framework as a high-performance cathode material for aqueous rechargeable zinc-ion batteries.
    Ma D; Zhao H; Cao F; Zhao H; Li J; Wang L; Liu K
    Chem Sci; 2022 Feb; 13(8):2385-2390. PubMed ID: 35310488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separator Design Strategies to Advance Rechargeable Aqueous Zinc Ion Batteries.
    Du H; Yi Z; Li H; Lv W; Hu N; Zhang X; Chen W; Wei Z; Shen F; He H
    Chemistry; 2024 Feb; 30(10):e202303461. PubMed ID: 38050714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.