These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

768 related articles for article (PubMed ID: 33725419)

  • 41. Defect Engineered Ternary Spinel: An Efficient Cathode for an Aqueous Rechargeable Zinc-Ion Battery of Long-Term Cyclability.
    Mallick S; Choutipalli VSK; Bag S; Subramanian V; Raj CR
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37577-37586. PubMed ID: 35944146
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent Progress on Phosphate Cathode Materials for Aqueous Zinc-Ion Batteries.
    Ou L; Ou H; Qin M; Liu Z; Fang G; Cao X; Liang S
    ChemSusChem; 2022 Oct; 15(19):e202201184. PubMed ID: 35934677
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries.
    Dong H; Li J; Zhao S; Jiao Y; Chen J; Tan Y; Brett DJL; He G; Parkin IP
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):745-754. PubMed ID: 33370108
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid-Water Mixture as Electrolyte.
    Liu Z; Pulletikurthi G; Endres F
    ACS Appl Mater Interfaces; 2016 May; 8(19):12158-64. PubMed ID: 27119430
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn-Ion Batteries.
    Zheng J; Huang Z; Ming F; Zeng Y; Wei B; Jiang Q; Qi Z; Wang Z; Liang H
    Small; 2022 May; 18(21):e2200006. PubMed ID: 35261146
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal-Organic Framework-Based Materials in Aqueous Zinc-Ion Batteries.
    Wu F; Wu B; Mu Y; Zhou B; Zhang G; Zeng L
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047010
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigation of V
    Zhou J; Shan L; Wu Z; Guo X; Fang G; Liang S
    Chem Commun (Camb); 2018 Apr; 54(35):4457-4460. PubMed ID: 29652066
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent Advances in Graphene-Based Materials for Zinc-Ion Batteries.
    Li L; Yue S; Jia S; Wang C; Zhang D
    Chem Rec; 2024 Apr; 24(4):e202300341. PubMed ID: 38180284
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interfacial Engineering Coupled Valence Tuning of MoO
    Liu Y; Wang J; Zeng Y; Liu J; Liu X; Lu X
    Small; 2020 Mar; 16(11):e1907458. PubMed ID: 32068969
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review.
    Du Y; Li Y; Xu BB; Liu TX; Liu X; Ma F; Gu X; Lai C
    Small; 2022 Oct; 18(43):e2104640. PubMed ID: 34882951
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Layered Ca
    Sun T; Nian Q; Zheng S; Shi J; Tao Z
    Small; 2020 Apr; 16(17):e2000597. PubMed ID: 32249537
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toward Long-Life Aqueous Zinc Ion Batteries by Constructing Stable Zinc Anodes.
    Liu Y; Liu Y; Wu X
    Chem Rec; 2022 Oct; 22(10):e202200088. PubMed ID: 35652535
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Building High Rate Capability and Ultrastable Dendrite-Free Organic Anode for Rechargeable Aqueous Zinc Batteries.
    Liu N; Wu X; Zhang Y; Yin Y; Sun C; Mao Y; Fan L; Zhang N
    Adv Sci (Weinh); 2020 Jul; 7(14):2000146. PubMed ID: 32714747
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries.
    Chen X; Zhou Z; Karahan HE; Shao Q; Wei L; Chen Y
    Small; 2018 Nov; 14(44):e1801929. PubMed ID: 30160051
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microstructural Engineering of Cathode Materials for Advanced Zinc-Ion Aqueous Batteries.
    Pam ME; Yan D; Yu J; Fang D; Guo L; Li XL; Li TC; Lu X; Ang LK; Amal R; Han Z; Yang HY
    Adv Sci (Weinh); 2020 Jan; 8(1):2002722. PubMed ID: 33437582
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Insights on Flexible Zinc-Ion Batteries from Lab Research to Commercialization.
    Dong H; Li J; Guo J; Lai F; Zhao F; Jiao Y; Brett DJL; Liu T; He G; Parkin IP
    Adv Mater; 2021 May; 33(20):e2007548. PubMed ID: 33797810
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.
    Yang J; Yin B; Sun Y; Pan H; Sun W; Jia B; Zhang S; Ma T
    Nanomicro Lett; 2022 Jan; 14(1):42. PubMed ID: 34981202
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering techniques to dendrite free Zinc-based rechargeable batteries.
    Worku AK
    Front Chem; 2022; 10():1018461. PubMed ID: 36247659
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tremella-like Hydrated Vanadium Oxide Cathode with an Architectural Design Strategy toward Ultralong Lifespan Aqueous Zinc-Ion Batteries.
    Guan X; Sun Q; Sun C; Duan T; Nie W; Liu Y; Zhao K; Cheng H; Lu X
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41688-41697. PubMed ID: 34436858
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.