These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33725458)

  • 1. Phytoextraction of arsenic using a weed plant
    Singh S; Fulzele DP
    Int J Phytoremediation; 2021; 23(12):1310-1318. PubMed ID: 33725458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.
    Mesa V; Navazas A; González-Gil R; González A; Weyens N; Lauga B; Gallego JLR; Sánchez J; Peláez AI
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing
    Chaturvedi R; Favas PJC; Pratas J; Varun M; Paul MS
    Int J Phytoremediation; 2021; 23(3):279-290. PubMed ID: 33040612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morpho-physiological traits, antioxidant capacity and phytoextraction of copper by ramie (Boehmeria nivea L.) grown as fodder in copper-contaminated soil.
    Rehman M; Maqbool Z; Peng D; Liu L
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5851-5861. PubMed ID: 30613880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of sulphate and cytokinin in assisted arsenic phytoextraction by industrial Cannabis sativa L.
    Grifoni M; Rosellini I; Petruzzelli G; Pedron F; Franchi E; Barbafieri M
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):47294-47305. PubMed ID: 33890221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil.
    Mao X; Han FX; Shao X; Guo K; McComb J; Arslan Z; Zhang Z
    Ecotoxicol Environ Saf; 2016 Mar; 125():16-24. PubMed ID: 26650421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil.
    Zeng P; Guo Z; Xiao X; Peng C; Feng W; Xin L; Xu Z
    Sci Total Environ; 2019 Feb; 650(Pt 1):594-603. PubMed ID: 30205349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High phytoremediation and translocation potential of an invasive weed species (Amaranthus retroflexus) in Europe in metal-contaminated areas.
    Sipos B; Bibi D; Magura T; Tóthmérész B; Simon E
    Environ Monit Assess; 2023 Jun; 195(6):790. PubMed ID: 37261518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of arsenic-contaminated paddy soil by intercropping aquatic vegetables and rice.
    Huang SY; Zhuo C; Du XY; Li HS
    Int J Phytoremediation; 2021; 23(10):1021-1029. PubMed ID: 33491468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus.
    Bruno LB; Anbuganesan V; Karthik C; Tripti ; Kumar A; Banu JR; Freitas H; Rajkumar M
    J Environ Manage; 2021 Jul; 289():112553. PubMed ID: 33857710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morpho-physiological traits, gaseous exchange attributes, and phytoremediation potential of jute (Corchorus capsularis L.) grown in different concentrations of copper-contaminated soil.
    Saleem MH; Fahad S; Khan SU; Ahmar S; Ullah Khan MH; Rehman M; Maqbool Z; Liu L
    Ecotoxicol Environ Saf; 2020 Feb; 189():109915. PubMed ID: 31722799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil.
    Schneider J; Bundschuh J; Rangel WM; Guilherme LRG
    Environ Pollut; 2017 May; 224():125-135. PubMed ID: 28214191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing human health risks and strategies for phytoremediation in soils contaminated with As, Cd, Pb, and Zn by slag disposal.
    da Silva WR; da Silva FBV; Araújo PRM; do Nascimento CWA
    Ecotoxicol Environ Saf; 2017 Oct; 144():522-530. PubMed ID: 28675866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Furcraea foetida (L.)Haw. for phytoremediation of cadmium contaminated soils.
    Ramana S; Tripathi AK; Kumar A; Dey P; Saha JK; Patra AK
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):14177-14181. PubMed ID: 33491145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of potential indigenous plant species for the phytoremediation of arsenic-contaminated areas of Bangladesh.
    Mahmud R; Inoue N; Kasajima SY; Shaheen R
    Int J Phytoremediation; 2008; 10(2):117-30. PubMed ID: 18709925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic speciation and distribution in an arsenic hyperaccumulating plant.
    Zhang W; Cai Y; Tu C; Ma LQ
    Sci Total Environ; 2002 Dec; 300(1-3):167-77. PubMed ID: 12685480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: implications for arid regions.
    Palanivel TM; Pracejus B; Victor R
    Environ Sci Pollut Res Int; 2020 May; 27(14):17359-17369. PubMed ID: 32157545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Old leaves accumulate more heavy metals than other parts of the desert shrub
    Almehdi A; El-Keblawy A; Shehadi I; El-Naggar M; Saadoun I; Mosa KA; Abhilash PC
    Int J Phytoremediation; 2019; 21(12):1254-1262. PubMed ID: 31134813
    [No Abstract]   [Full Text] [Related]  

  • 20. Strong antioxidant capacity of horseradish hairy root cultures under arsenic stress indicates the possible use of Armoracia rusticana plants for phytoremediation.
    Kofroňová M; Hrdinová A; Mašková P; Soudek P; Tremlová J; Pinkas D; Lipavská H
    Ecotoxicol Environ Saf; 2019 Jun; 174():295-304. PubMed ID: 30844669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.