These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 33725546)
1. Selection of specific nanobodies to develop an immuno-assay detecting Staphylococcus aureus in milk. Hu Y; Sun Y; Gu J; Yang F; Wu S; Zhang C; Ji X; Lv H; Muyldermans S; Wang S Food Chem; 2021 Aug; 353():129481. PubMed ID: 33725546 [TBL] [Abstract][Full Text] [Related]
2. Nanobodies Based on a Sandwich Immunoassay for the Detection of Staphylococcal Enterotoxin B Free from Interference by Protein A. Ji Y; Li X; Lu Y; Guo P; Zhang G; Wang Y; Zhang Y; Zhu W; Pan J; Wang J J Agric Food Chem; 2020 May; 68(21):5959-5968. PubMed ID: 32374597 [TBL] [Abstract][Full Text] [Related]
3. Development of nanobody-horseradish peroxidase-based sandwich ELISA to detect Salmonella Enteritidis in milk and in vivo colonization in chicken. Gu K; Song Z; Zhou C; Ma P; Li C; Lu Q; Liao Z; Huang Z; Tang Y; Li H; Zhao Y; Yan W; Lei C; Wang H J Nanobiotechnology; 2022 Mar; 20(1):167. PubMed ID: 35361208 [TBL] [Abstract][Full Text] [Related]
4. Facile construction of sandwich ELISA based on double-nanobody for specific detection of α-hemolysin in food samples. Zhang Y; Wang T; Zhang P; Wan Y; Chang G; Xu X; Ruan F; Zhou T; Zhao Q; Zhang M; Wang X Talanta; 2024 Jul; 274():126021. PubMed ID: 38569370 [TBL] [Abstract][Full Text] [Related]
5. Development of a specific nanobody and its application in rapid and selective determination of Salmonella enteritidis in milk. He Y; Ren Y; Guo B; Yang Y; Ji Y; Zhang D; Wang J; Wang Y; Wang H Food Chem; 2020 Apr; 310():125942. PubMed ID: 31830714 [TBL] [Abstract][Full Text] [Related]
6. Identification and measurement of staphylococcal enterotoxin M from Staphylococcus aureus isolate associated with staphylococcal food poisoning. Zhao Y; Zhu A; Tang J; Tang C; Chen J Lett Appl Microbiol; 2017 Jul; 65(1):27-34. PubMed ID: 28444877 [TBL] [Abstract][Full Text] [Related]
7. Sensitive and rapid detection of staphylococcus aureus in milk via cell binding domain of lysin. Yu J; Zhang Y; Zhang Y; Li H; Yang H; Wei H Biosens Bioelectron; 2016 Mar; 77():366-71. PubMed ID: 26433070 [TBL] [Abstract][Full Text] [Related]
8. Fenobody and RANbody-based sandwich enzyme-linked immunosorbent assay to detect Newcastle disease virus. Ji P; Zhu J; Li X; Fan W; Liu Q; Wang K; Zhao J; Sun Y; Liu B; Zhou EM; Zhao Q J Nanobiotechnology; 2020 Mar; 18(1):44. PubMed ID: 32169061 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of three different molecular markers for the detection of Staphylococcus aureus by polymerase chain reaction. Riyaz-Ul-Hassan S; Verma V; Qazi GN Food Microbiol; 2008 May; 25(3):452-9. PubMed ID: 18355670 [TBL] [Abstract][Full Text] [Related]
10. Development of sandwich enzyme-linked immunosorbent assay for the detection of Cronobacter muytjensii (formerly called Enterobacter sakazakii). Park S; Shukla S; Kim Y; Oh S; Hun Kim S; Kim M Microbiol Immunol; 2012 Jul; 56(7):472-9. PubMed ID: 22519814 [TBL] [Abstract][Full Text] [Related]
11. [Staphylococcus aureus in food determined by polymerase chain reaction]. Tian J; Ji R; Yang J; Li Y Wei Sheng Yan Jiu; 2007 Mar; 36(2):183-6. PubMed ID: 17555096 [TBL] [Abstract][Full Text] [Related]
12. Propidium monoazide combined with real-time PCR for selective detection of viable Staphylococcus aureus in milk powder and meat products. Zhang Z; Liu W; Xu H; Aguilar ZP; Shah NP; Wei H J Dairy Sci; 2015 Mar; 98(3):1625-33. PubMed ID: 25582587 [TBL] [Abstract][Full Text] [Related]
13. Unbiased Immunization Strategy Yielding Specific Nanobodies against Macadamia Allergen of Vicilin-like Protein for Immunoassay Development. Hu Y; Wu S; Wang Y; Lin J; Sun Y; Zhang C; Gu J; Yang F; Lv H; Ji X; Zhang Y; Muyldermans S; Wang S J Agric Food Chem; 2021 May; 69(17):5178-5188. PubMed ID: 33882666 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of species-specific nanobodies for the detection of Listeria monocytogenes in milk. Tu Z; Chen Q; Li Y; Xiong Y; Xu Y; Hu N; Tao Y Anal Biochem; 2016 Jan; 493():1-7. PubMed ID: 26456330 [TBL] [Abstract][Full Text] [Related]
15. An innovative approach in the detection of Toxocara canis excretory/secretory antigens using specific nanobodies. Morales-Yanez FJ; Sariego I; Vincke C; Hassanzadeh-Ghassabeh G; Polman K; Muyldermans S Int J Parasitol; 2019 Jul; 49(8):635-645. PubMed ID: 31150611 [TBL] [Abstract][Full Text] [Related]
16. A new strategy to generate nanobodies for the coumaphos based on the synthesized nanobody libraries. Fang R; Li Y; Liu F; Liang Y; Wang Y; Zhong G; Xu Z; Hammock BD; Wang H Food Chem; 2024 Oct; 455():139684. PubMed ID: 38833869 [TBL] [Abstract][Full Text] [Related]
17. Identification and measurement of staphylococcal enterotoxin-like protein I (SEll) secretion from Staphylococcus aureus clinical isolate. Zhao Y; Zhu A; Tang J; Tang C; Chen J; Liu J J Appl Microbiol; 2016 Aug; 121(2):539-46. PubMed ID: 27187155 [TBL] [Abstract][Full Text] [Related]
18. Sensitive enzyme-amplified electrical immunoassay for protein A-bearing Staphylococcus aureus in foods. Brooks JL; Mirhabibollahi B; Kroll RG Appl Environ Microbiol; 1990 Nov; 56(11):3278-84. PubMed ID: 2268148 [TBL] [Abstract][Full Text] [Related]
19. Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk. Sung YJ; Suk HJ; Sung HY; Li T; Poo H; Kim MG Biosens Bioelectron; 2013 May; 43():432-9. PubMed ID: 23370174 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional macroporous gold electrodes superior to conventional gold disk electrodes in the construction of an electrochemical immunobiosensor for Staphylococcus aureus detection. Wang H; Zhao X; Yang H; Cao L; Deng W; Tan Y; Xie Q Analyst; 2020 Apr; 145(8):2988-2994. PubMed ID: 32129334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]