BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 33726038)

  • 21. Adjustable and continuous eyebox replication for a holographic Maxwellian near-eye display.
    Zhang S; Zhang Z; Liu J
    Opt Lett; 2022 Feb; 47(3):445-448. PubMed ID: 35103647
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aberration-free pupil steerable Maxwellian display for augmented reality with cholesteric liquid crystal holographic lenses.
    Xiong J; Li Y; Li K; Wu ST
    Opt Lett; 2021 Apr; 46(7):1760-1763. PubMed ID: 33793537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extending eyebox with tunable viewpoints for see-through near-eye display.
    Shi X; Liu J; Zhang Z; Zhao Z; Zhang S
    Opt Express; 2021 Apr; 29(8):11613-11626. PubMed ID: 33984938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metalens Eyepiece for 3D Holographic Near-Eye Display.
    Wang C; Yu Z; Zhang Q; Sun Y; Tao C; Wu F; Zheng Z
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binocular holographic three-dimensional display using a single spatial light modulator and a grating.
    Su Y; Cai Z; Liu Q; Shi L; Zhou F; Wu J
    J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1477-1486. PubMed ID: 30110285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications.
    Yin K; Hsiang EL; Zou J; Li Y; Yang Z; Yang Q; Lai PC; Lin CL; Wu ST
    Light Sci Appl; 2022 May; 11(1):161. PubMed ID: 35637183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial loss factor for the analysis of accommodation depth cue on near-eye light field displays.
    Zhao J; Xia J; Ma Q; Wu J
    Opt Express; 2019 Nov; 27(24):34582-34592. PubMed ID: 31878645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous multi-channel near-eye display: a holographic retinal projection display with large information content.
    Wang Z; Tu K; Pang Y; Zhang X; Lv G; Feng Q; Wang A; Ming H
    Opt Lett; 2022 Aug; 47(15):3876-3879. PubMed ID: 35913345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Matrix optics representation and imaging analysis of a light-field near-eye display.
    Yao C; Cheng D; Wang Y
    Opt Express; 2020 Dec; 28(26):39976-39997. PubMed ID: 33379535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual-depth augmented reality display with reflective polarization-dependent lenses.
    Li Y; Yang Q; Xiong J; Li K; Wu ST
    Opt Express; 2021 Sep; 29(20):31478-31487. PubMed ID: 34615239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Holographic near-eye display based on complex amplitude modulation with band-limited zone plates.
    Chen Y; Hua M; Zhang T; Zhou M; Wu J; Zou W
    Opt Express; 2021 Jul; 29(14):22749-22760. PubMed ID: 34266031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. See-through holographic display with randomly distributed partial computer generated holograms.
    Mu CT; Tseng SH; Chen CH
    Opt Express; 2020 Nov; 28(24):35674-35681. PubMed ID: 33379678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compact reconstruction of a Fourier hologram for a 3D object by scaling compensation.
    Wang J; Zhang Y; Lei X; Wu Y
    Appl Opt; 2023 Apr; 62(10):2604-2609. PubMed ID: 37132817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accommodation-Free Head Mounted Display with Comfortable 3D Perception and an Enlarged Eye-box.
    Shrestha PK; Pryn MJ; Jia J; Chen JS; Fructuoso HN; Boev A; Zhang Q; Chu D
    Research (Wash D C); 2019; 2019():9273723. PubMed ID: 32043082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display.
    Lee JS; Kim YK; Won YH
    Opt Express; 2018 Jan; 26(2):2149-2159. PubMed ID: 29401939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zoomable head-up display with the integration of holographic and geometrical imaging.
    Mu CT; Lin WT; Chen CH
    Opt Express; 2020 Nov; 28(24):35716-35723. PubMed ID: 33379682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computer-generated photorealistic hologram using ray-wavefront conversion based on the additive compressive light field approach.
    Wang Z; Zhu LM; Zhang X; Dai P; Lv GQ; Feng QB; Wang AT; Ming H
    Opt Lett; 2020 Feb; 45(3):615-618. PubMed ID: 32004265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High Resolution Multiview Holographic Display Based on the Holographic Optical Element.
    Qin X; Sang X; Li H; Xiao R; Zhong C; Yan B; Sun Z; Dong Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677208
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maxwellian near-eye display with an expanded eyebox.
    Lin T; Zhan T; Zou J; Fan F; Wu ST
    Opt Express; 2020 Dec; 28(26):38616-38625. PubMed ID: 33379428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Progress in virtual reality and augmented reality based on holographic display.
    He Z; Sui X; Jin G; Cao L
    Appl Opt; 2019 Feb; 58(5):A74-A81. PubMed ID: 30873963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.