These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 33726038)

  • 41. Flexible depth-of-field imaging system using a spatial light modulator.
    Hong D; Park K; Cho H; Kim M
    Appl Opt; 2007 Dec; 46(36):8591-9. PubMed ID: 18091969
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metasurface wavefront control for high-performance user-natural augmented reality waveguide glasses.
    Boo H; Lee YS; Yang H; Matthews B; Lee TG; Wong CW
    Sci Rep; 2022 Apr; 12(1):5832. PubMed ID: 35388053
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aberration-corrected full-color holographic augmented reality near-eye display using a Pancharatnam-Berry phase lens.
    Nam SW; Moon S; Lee B; Kim D; Lee S; Lee CK; Lee B
    Opt Express; 2020 Oct; 28(21):30836-30850. PubMed ID: 33115076
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Holographic multiplane near-eye display based on amplitude-only wavefront modulation.
    Chang C; Cui W; Gao L
    Opt Express; 2019 Oct; 27(21):30960-30970. PubMed ID: 31684337
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Free-space combiner based on holographic mirrors for head-mounted displays.
    Solomashenko AB; Afanaseva OL; Markin VV; Kuznetsov AS; Lushnikov DS
    Appl Opt; 2024 Mar; 63(7):B85-B92. PubMed ID: 38437259
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exploring angular-steering illumination-based eyebox expansion for holographic displays.
    Xia X; Wang W; Guan F; Yang F; Shui X; Zheng H; Yu Y; Peng Y
    Opt Express; 2023 Sep; 31(19):31563-31573. PubMed ID: 37710671
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses.
    Zhan T; Lee YH; Wu ST
    Opt Express; 2018 Feb; 26(4):4863-4872. PubMed ID: 29475331
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of Eye Vergence and Accommodation on Interactions with Content on an AR Magic-lens Display and its Surroundings.
    Lugtenberg G; Copic Pucihar K; Kljun M; Sawabe T; Fujimoto Y; Kanbara M; Kato H
    IEEE Trans Vis Comput Graph; 2024 May; PP():. PubMed ID: 38771678
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-resolution augmented reality 3D display with use of a lenticular lens array holographic optical element.
    Deng H; Chen C; He MY; Li JJ; Zhang HL; Wang QH
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):588-593. PubMed ID: 31044978
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Compact full-color augmented reality near-eye display using freeform optics and a holographic optical combiner.
    Shu T; Hu G; Wu R; Li H; Zhang Z; Liu X
    Opt Express; 2022 Aug; 30(18):31714-31727. PubMed ID: 36242248
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neural étendue expander for ultra-wide-angle high-fidelity holographic display.
    Tseng E; Kuo G; Baek SH; Matsuda N; Maimone A; Schiffers F; Chakravarthula P; Fu Q; Heidrich W; Lanman D; Heide F
    Nat Commun; 2024 Apr; 15(1):2907. PubMed ID: 38649369
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Super multi-view near-eye display to solve vergence-accommodation conflict.
    Ueno T; Takaki Y
    Opt Express; 2018 Nov; 26(23):30703-30715. PubMed ID: 30469963
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tomographic waveguide-based augmented reality display.
    Zhao N; Xiao J; Weng P; Zhang H
    Opt Express; 2024 May; 32(11):18692-18699. PubMed ID: 38859019
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design of a high-resolution holographic waveguide eye-tracking system operating in near-infrared with conventional optical elements.
    Zhao J; Chrysler B; Kostuk RK
    Opt Express; 2021 Jul; 29(15):24536-24551. PubMed ID: 34614696
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Three-dimensional see-through augmented-reality display system using a holographic micromirror array.
    Darkhanbaatar N; Erdenebat MU; Shin CW; Kwon KC; Lee KY; Baasantseren G; Kim N
    Appl Opt; 2021 Sep; 60(25):7545-7551. PubMed ID: 34613220
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Full-color see-through near-eye holographic display with 80° field of view and an expanded eye-box.
    Duan X; Liu J; Shi X; Zhang Z; Xiao J
    Opt Express; 2020 Oct; 28(21):31316-31329. PubMed ID: 33115107
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extended depth of field in augmented reality.
    Kim SK; Kwon Y; Yoon KH
    Sci Rep; 2023 May; 13(1):8786. PubMed ID: 37258690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acceleration of computer-generated hologram using wavefront-recording plane and look-up table in three-dimensional holographic display.
    Pi D; Liu J; Han Y; Yu S; Xiang N
    Opt Express; 2020 Mar; 28(7):9833-9841. PubMed ID: 32225583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Towards a Switchable AR/VR Near-eye Display with Accommodation-Vergence and Eyeglass Prescription Support.
    Xia X; Guan Y; State A; Chakravarthula P; Rathinavel K; Cham TJ; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3114-3124. PubMed ID: 31403422
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Color holographic display with white light LED source and single phase only SLM.
    Kozacki T; Chlipala M
    Opt Express; 2016 Feb; 24(3):2189-99. PubMed ID: 26906795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.