These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33726049)

  • 1. Efficiency enhancement in a single bandgap silicon solar cell considering hot-carrier extraction using selective energy contacts.
    Shayan S; Matloub S; Rostami A
    Opt Express; 2021 Feb; 29(4):5068-5080. PubMed ID: 33726049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent Energetic Electrons in Methylammonium Lead Iodide Perovskite Thin Films.
    Niesner D; Zhu H; Miyata K; Joshi PP; Evans TJ; Kudisch BJ; Trinh MT; Marks M; Zhu XY
    J Am Chem Soc; 2016 Dec; 138(48):15717-15726. PubMed ID: 27934024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage.
    Limpert S; Burke A; Chen IJ; Anttu N; Lehmann S; Fahlvik S; Bremner S; Conibeer G; Thelander C; Pistol ME; Linke H
    Nanotechnology; 2017 Oct; 28(43):434001. PubMed ID: 28857751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells.
    Zhang Y; Yam C; Schatz GC
    J Phys Chem Lett; 2016 May; 7(10):1852-8. PubMed ID: 27136049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hot-electron thermophotonic solar cell demonstrated by thermal up-conversion of sub-bandgap photons.
    Farrell DJ; Sodabanlu H; Wang Y; Sugiyama M; Okada Y
    Nat Commun; 2015 Nov; 6():8685. PubMed ID: 26541415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hot carrier extraction from 2D semiconductor photoelectrodes.
    Austin R; Farah YR; Sayer T; Luther BM; Montoya-Castillo A; Krummel AT; Sambur JB
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2220333120. PubMed ID: 37011201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient optical extraction of hot-carrier energy.
    Saeed S; de Jong EM; Dohnalova K; Gregorkiewicz T
    Nat Commun; 2014 Aug; 5():4665. PubMed ID: 25116046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact Selectivity Engineering in a 2 μm Thick Ultrathin c-Si Solar Cell Using Transition-Metal Oxides Achieving an Efficiency of 10.8.
    Xue M; Islam R; Meng AC; Lyu Z; Lu CY; Tae C; Braun MR; Zang K; McIntyre PC; Kamins TI; Saraswat KC; Harris JS
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41863-41870. PubMed ID: 29124928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.
    St-Gelais R; Bhatt GR; Zhu L; Fan S; Lipson M
    ACS Nano; 2017 Mar; 11(3):3001-3009. PubMed ID: 28287714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Zinc-Doping on the Reduction of the Hot-Carrier Cooling Rate in Halide Perovskites.
    Wei Q; Yin J; Bakr OM; Wang Z; Wang C; Mohammed OF; Li M; Xing G
    Angew Chem Int Ed Engl; 2021 May; 60(19):10957-10963. PubMed ID: 33629387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slowing Hot-Electron Relaxation in Mix-Phase Nanowires for Hot-Carrier Photovoltaics.
    Wang H; Wang F; Xu T; Xia H; Xie R; Zhou X; Ge X; Liu W; Zhu Y; Sun L; Guo J; Ye J; Zubair M; Luo M; Yu C; Sun D; Li T; Zhuang Q; Fu L; Hu W; Lu W
    Nano Lett; 2021 Sep; 21(18):7761-7768. PubMed ID: 34460270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress and Future Prospects of Wide-Bandgap Metal-Compound-Based Passivating Contacts for Silicon Solar Cells.
    Gao K; Bi Q; Wang X; Liu W; Xing C; Li K; Xu D; Su Z; Zhang C; Yu J; Li D; Sun B; Bullock J; Zhang X; Yang X
    Adv Mater; 2022 Jul; 34(26):e2200344. PubMed ID: 35524638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.
    Lee YK; Lee H; Lee C; Hwang E; Park JY
    J Phys Condens Matter; 2016 Jun; 28(25):254006. PubMed ID: 27168177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Way to Pursue Truly High-Performance Perovskite Solar Cells.
    Wu JR; Thakur D; Chiang SE; Chandel A; Wang JS; Chiu KC; Chang SH
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31492035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. About the Implementation of Frequency Conversion Processes in Solar Cell Device Simulations.
    Quandt A; Aslan T; Mokgosi I; Warmbier R; Ferrari M; Righini G
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conductive Cuprous Iodide Hole-Selective Contacts with Thermal and Ambient Stability for Silicon Solar Cells.
    Lin W; Wu W; Xie Q; Liu Z; Qiu K; Cai L; Yao Z; Meng L; Ai B; Liang Z; Shen H
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43699-43706. PubMed ID: 30474363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hot-carrier transfer at photocatalytic silicon/platinum interfaces.
    Zhang C; Fan Y; Huang X; Zhang KHL; Beard MC; Yang Y
    J Chem Phys; 2020 Apr; 152(14):144705. PubMed ID: 32295367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow Hot-Carrier Cooling in Halide Perovskites: Prospects for Hot-Carrier Solar Cells.
    Li M; Fu J; Xu Q; Sum TC
    Adv Mater; 2019 Nov; 31(47):e1802486. PubMed ID: 30600555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Titanium Nitride Electron-Conductive Contact for Silicon Solar Cells By Radio Frequency Sputtering from a TiN Target.
    Yu J; Phang P; Samundsett C; Basnet R; Neupan GP; Yang X; Macdonald DH; Wan Y; Yan D; Ye J
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26177-26183. PubMed ID: 32402191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.