BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 33726052)

  • 21. Multipole Resonance in Arrays of Diamond Dielectric: A Metamaterial Perfect Absorber in the Visible Regime.
    Li C; Fan H; Dai Q; Wei Z; Lan S; Liu H
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption.
    Zhu H; Zhang Y; Ye L; Li Y; Xu Y; Xu R
    Opt Express; 2020 Dec; 28(26):38626-38637. PubMed ID: 33379429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lithography-free wide-angle polarization-independent ultra-broadband absorber based on anti-reflection effect.
    Liao YL; Zhou J; Chen X; Wu J; Chen Z; Wu S; Zhao Y
    Opt Express; 2022 May; 30(10):16847-16855. PubMed ID: 36221519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A tunable wide-angle narrowband perfect absorber based on an optical cavity containing hyperbolic metamaterials.
    Xie Z; Zhu X; Deng Y; Chen Y
    Phys Chem Chem Phys; 2023 Nov; 25(42):29358-29364. PubMed ID: 37877334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Broadband Absorption Based on Thin Refractory Titanium Nitride Patterned Film Metasurface.
    Huo D; Ma X; Su H; Wang C; Zhao H
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths.
    Nguyen DM; Lee D; Rho J
    Sci Rep; 2017 Jun; 7(1):2611. PubMed ID: 28572672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visible and Near-Infrared Broadband Absorber Based on Ti
    Jia Y; Wu T; Wang G; Jiang J; Miao F; Gao Y
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers.
    Corrigan TD; Park DH; Drew HD; Guo SH; Kolb PW; Herman WN; Phaneuf RJ
    Appl Opt; 2012 Mar; 51(8):1109-14. PubMed ID: 22410990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrabroadband metamaterial absorbers from ultraviolet to near-infrared based on multiple resonances for harvesting solar energy.
    Feng H; Li X; Wang M; Xia F; Zhang K; Kong W; Dong L; Yun M
    Opt Express; 2021 Feb; 29(4):6000-6010. PubMed ID: 33726131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical Investigation of Graphene and STO Based Tunable Terahertz Absorber with Switchable Bifunctionality of Broadband and Narrowband Absorption.
    Liu Y; Huang R; Ouyang Z
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of ultra-broadband absorption enhancement in plasmonic absorber by interaction resonance of multi-plasmon modes and Fabry-Perot mode.
    Zeng L; Zhang X; Ye H; Dong H; Zhang H
    Opt Express; 2021 Aug; 29(18):29228-29241. PubMed ID: 34615037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An ultra-broadband solar absorber based on α-GST/Fe metamaterials from visible light to mid-infrared.
    Pan Y; Li Y; Chen F; Cheng S; Yang W; Wang B; Yi Z; Yao D
    Phys Chem Chem Phys; 2023 Oct; 25(40):27586-27594. PubMed ID: 37807903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wide-Angle Polarization-Independent Ultra-Broadband Absorber from Visible to Infrared.
    Liu J; Chen W; Zheng JC; Chen YS; Yang CF
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis and design of InAs nanowire array based ultra broadband perfect absorber.
    Hassan MM; Islam F; Baten MZ; Subrina S
    RSC Adv; 2021 Nov; 11(59):37595-37603. PubMed ID: 35496425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An ultra-broadband and wide-angle absorber based on a TiN metamaterial for solar harvesting.
    Sun C; Liu H; Yang B; Zhang K; Zhang B; Wu X
    Phys Chem Chem Phys; 2022 Dec; 25(1):806-812. PubMed ID: 36510760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultra-Wideband and Wide-Angle Perfect Solar Energy Absorber Based on Titanium and Silicon Dioxide Colloidal Nanoarray Structure.
    Wu P; Wei K; Xu D; Chen M; Zeng Y; Jian R
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultra-broadband perfect absorber using triple-layer nanofilm in a long-wave near-infrared regime.
    Kuang K; Wang Q; Yuan X; Yu L; Liang Y; Zhang Y; Peng W
    Appl Opt; 2022 Sep; 61(26):7706-7712. PubMed ID: 36256371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. VO
    He J; Zhang M; Shu S; Yan Y; Wang M
    Opt Express; 2020 Dec; 28(25):37590-37599. PubMed ID: 33379591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultra-Broadband Perfect Absorber based on Titanium Nanoarrays for Harvesting Solar Energy.
    Song D; Zhang K; Qian M; Liu Y; Wu X; Yu K
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamically switchable broadband and triple-band terahertz absorber based on a metamaterial structure with graphene.
    Chen Z; Chen J; Tang H; Shen T; Zhang H
    Opt Express; 2022 Feb; 30(5):6778-6785. PubMed ID: 35299456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.