These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33726116)

  • 1. Coupled metamaterial optical resonators for infrared emissivity spectrum modulation.
    Morsy AM; Povinelli ML
    Opt Express; 2021 Feb; 29(4):5840-5847. PubMed ID: 33726116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial.
    Manjappa M; Turaga SP; Srivastava YK; Bettiol AA; Singh R
    Opt Lett; 2017 Jun; 42(11):2106-2109. PubMed ID: 28569856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical and Theoretical Study of Tunable Plasmonically Induced Transparency Effect Based on Bright-Dark Mode Coupling in Graphene Metasurface.
    Ma Q; Dai J; Luo A; Hong W
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32013078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multipole Modes Excitation of uncoupled dark Plasmons Resonators based on Frequency Selective Surface at X-band Frequency Regime.
    Lan Y; Xu Y; Jia Y; Mei T; Qu S; Yan B; Yang D; Chen B; Xu R; Li Y
    Sci Rep; 2017 Aug; 7(1):9492. PubMed ID: 28842626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes.
    Xie J; Zhu X; Zang X; Cheng Q; Ye Y; Zhu Y
    Sci Rep; 2017 Sep; 7(1):11291. PubMed ID: 28900248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings.
    Wan M; Song Y; Zhang L; Zhou F
    Opt Express; 2015 Oct; 23(21):27361-8. PubMed ID: 26480398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators.
    Li Z; Stan L; Czaplewski DA; Yang X; Gao J
    Opt Express; 2018 Mar; 26(5):5616-5631. PubMed ID: 29529764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromagnetically induced absorption in a three-resonator metasurface system.
    Zhang X; Xu N; Qu K; Tian Z; Singh R; Han J; Agarwal GS; Zhang W
    Sci Rep; 2015 May; 5():10737. PubMed ID: 26023061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linearly thermal-tunable near-infrared ultra-narrowband metamaterial perfect absorber with low power and a large modulation depth based on a four-nanorod-coupled a-silicon resonator.
    Zhao L; Yang X; Niu Q; He Z; Dong S
    Opt Lett; 2019 Aug; 44(15):3885-3888. PubMed ID: 31368993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical excitation of 2-D (1, 1) cavity mode with asymmetric sword-shaped notched square resonators for metamaterial perfect multiband absorbers in infrared range.
    Zhao L; Niu Q; He Z; Yang X; Dong S
    Opt Express; 2018 Nov; 26(24):31510-31522. PubMed ID: 30650736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong coupling of plasmonic bright and dark modes with two eigenmodes of a photonic crystal cavity.
    Meng F; Cao L; Karalis A; Gu H; Thomson MD; Roskos HG
    Opt Express; 2023 Nov; 31(24):39624-39637. PubMed ID: 38041279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective bright and dark mode excitation in coupled nanoantennas.
    Lee S; Park Y; Kim J; Roh YG; Park QH
    Opt Express; 2018 Aug; 26(17):21537-21545. PubMed ID: 30130860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators.
    Zhao L; Liu H; He Z; Dong S
    Opt Express; 2018 May; 26(10):12838-12851. PubMed ID: 29801317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators.
    Liu HC; Yariv A
    Opt Express; 2012 Apr; 20(8):9249-63. PubMed ID: 22513637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimodal Absorber Frequencies Shift Induced by the Coupling of Bright and Dark Modes.
    Chen Y; Hu J; Yin S; Zhang W; Huang W
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators.
    Chen J; Wang P; Chen C; Lu Y; Ming H; Zhan Q
    Opt Express; 2011 Mar; 19(7):5970-8. PubMed ID: 21451622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fano resonance in concentric ring apertures.
    Shu J; Gao W; Xu Q
    Opt Express; 2013 May; 21(9):11101-6. PubMed ID: 23669966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Microwave Differential Dielectric Sensor Based on Mode Splitting of Coupled Resonators.
    Almuhlafi AM; Alshaykh MS; Alajmi M; Alshammari B; Ramahi OM
    Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Substrate and Bright Resonances on Group Velocity in Metamaterial without Dark Resonator.
    Hokmabadi MP; Kim JH; Rivera E; Kung P; Kim SM
    Sci Rep; 2015 Sep; 5():14373. PubMed ID: 26395071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband nonreciprocal thermal emissivity and absorptivity.
    Shayegan KJ; Hwang JS; Zhao B; Raman AP; Atwater HA
    Light Sci Appl; 2024 Jul; 13(1):176. PubMed ID: 39048563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.