These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33726191)

  • 21. A gravitational-wave standard siren measurement of the Hubble constant.
    ; ; ; ; ; ;
    Nature; 2017 Nov; 551(7678):85-88. PubMed ID: 29094696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Revealing optical loss from modal frequency degeneracy in a long optical cavity.
    Fang Q; Blair CD; Zhao C; Blair DG
    Opt Express; 2021 Jul; 29(15):23902-23915. PubMed ID: 34614646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mirror Coating Solution for the Cryogenic Einstein Telescope.
    Craig K; Steinlechner J; Murray PG; Bell AS; Birney R; Haughian K; Hough J; MacLaren I; Penn S; Reid S; Robie R; Rowan S; Martin IW
    Phys Rev Lett; 2019 Jun; 122(23):231102. PubMed ID: 31298875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal noise from optical coatings in gravitational wave detectors.
    Harry GM; Armandula H; Black E; Crooks DR; Cagnoli G; Hough J; Murray P; Reid S; Rowan S; Sneddon P; Fejer MM; Route R; Penn SD
    Appl Opt; 2006 Mar; 45(7):1569-74. PubMed ID: 16539265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reflective coating optimization for interferometric detectors of gravitational waves.
    Principe M
    Opt Express; 2015 May; 23(9):10938-56. PubMed ID: 25969189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory.
    Ramette J; Kasprzack M; Brooks A; Blair C; Wang H; Heintze M
    Appl Opt; 2016 Apr; 55(10):2619-25. PubMed ID: 27139664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical characterization of ultrahigh diffraction efficiency gratings.
    Bunkowski A; Burmeister O; Clausnitzer T; Kley EB; Tünnermann A; Danzmann K; Schnabel R
    Appl Opt; 2006 Aug; 45(23):5795-9. PubMed ID: 16926863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy-sensitive cryogenic detectors for high-mass biomolecule mass spectrometry.
    Frank M; Labov SE; Westmacott G; Benner WH
    Mass Spectrom Rev; 1999; 18(3-4):155-86. PubMed ID: 10568040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of mechanical properties of cryogenically treated music wire.
    Heptonstall A; Waller M; Robertson NA
    Rev Sci Instrum; 2015 Aug; 86(8):084501. PubMed ID: 26329213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Narrowing the filter-cavity bandwidth in gravitational-wave detectors via optomechanical interaction.
    Ma Y; Danilishin SL; Zhao C; Miao H; Korth WZ; Chen Y; Ward RL; Blair DG
    Phys Rev Lett; 2014 Oct; 113(15):151102. PubMed ID: 25375698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Squeezed light for advanced gravitational wave detectors and beyond.
    Oelker E; Barsotti L; Dwyer S; Sigg D; Mavalvala N
    Opt Express; 2014 Aug; 22(17):21106-21. PubMed ID: 25321310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alignment of an interferometric gravitational wave detector.
    Fritschel P; Mavalvala N; Shoemaker D; Sigg D; Zucker M; González G
    Appl Opt; 1998 Oct; 37(28):6734-47. PubMed ID: 18301487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large and extremely low loss: the unique challenges of gravitational wave mirrors.
    Degallaix J; Michel C; Sassolas B; Allocca A; Cagnoli G; Balzarini L; Dolique V; Flaminio R; Forest D; Granata M; Lagrange B; Straniero N; Teillon J; Pinard L
    J Opt Soc Am A Opt Image Sci Vis; 2019 Nov; 36(11):C85-C94. PubMed ID: 31873699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Squeezed vacuum states of light for gravitational wave detectors.
    Barsotti L; Harms J; Schnabel R
    Rep Prog Phys; 2019 Jan; 82(1):016905. PubMed ID: 29569572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radiation-pressure cooling and optomechanical instability of a micromirror.
    Arcizet O; Cohadon PF; Briant T; Pinard M; Heidmann A
    Nature; 2006 Nov; 444(7115):71-4. PubMed ID: 17080085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On Special Optical Modes and Thermal Issues in Advanced Gravitational Wave Interferometric Detectors.
    Vinet JY
    Living Rev Relativ; 2009; 12(1):5. PubMed ID: 28179827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a frequency-detuned interferometer as a prototype experiment for next-generation gravitational-wave detectors.
    Somiya K; Beyersdorf P; Arai K; Sato S; Kawamura S; Miyakawa O; Kawazoe F; Sakata S; Sekido A; Mio N
    Appl Opt; 2005 Jun; 44(16):3179-91. PubMed ID: 15943251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum expander for gravitational-wave observatories.
    Korobko M; Ma Y; Chen Y; Schnabel R
    Light Sci Appl; 2019; 8():118. PubMed ID: 31839938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High mechanical Q-factor measurement of Si using a 3D cantilever support.
    Hamedan VJ; Winterflood J; Blair C; Ju L; Zhao C
    Rev Sci Instrum; 2022 Oct; 93(10):104501. PubMed ID: 36319399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Residual amplitude modulation in interferometric gravitational wave detectors.
    Kokeyama K; Izumi K; Korth WZ; Smith-Lefebvre N; Arai K; Adhikari RX
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jan; 31(1):81-8. PubMed ID: 24561943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.