These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33726195)

  • 1. Surviving entanglement in optic-microwave conversion by an electro-optomechanical system.
    Jo Y; Lee SY; Ihn YS; Kim D; Kim Z; Kim DY
    Opt Express; 2021 Mar; 29(5):6834-6844. PubMed ID: 33726195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissipation-driven entanglement between two microwave fields in a four-mode hybrid cavity optomechanical system.
    Liao CG; Shang X; Xie H; Lin XM
    Opt Express; 2022 Mar; 30(7):10306-10316. PubMed ID: 35473001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entanglement Thresholds of Doubly Parametric Quantum Transducers.
    Rau CL; Kyle A; Kwiatkowski A; Shojaee E; Teufel JD; Lehnert KW; Dennis T
    Phys Rev Appl; 2022 Apr; 17(4):. PubMed ID: 36632278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entanglement and nonclassicality in four-mode Gaussian states generated via parametric down-conversion and frequency up-conversion.
    Arkhipov II; Peřina J; Haderka O; Allevi A; Bondani M
    Sci Rep; 2016 Sep; 6():33802. PubMed ID: 27658508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-Optical Entanglement Swapping.
    Liu S; Lou Y; Chen Y; Jing J
    Phys Rev Lett; 2022 Feb; 128(6):060503. PubMed ID: 35213170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum entanglement and one-way steering in a cavity magnomechanical system via a squeezed vacuum field.
    Zhang W; Wang T; Han X; Zhang S; Wang HF
    Opt Express; 2022 Mar; 30(7):10969-10980. PubMed ID: 35473050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optomechanical entanglement between a movable mirror and a cavity field.
    Vitali D; Gigan S; Ferreira A; Böhm HR; Tombesi P; Guerreiro A; Vedral V; Zeilinger A; Aspelmeyer M
    Phys Rev Lett; 2007 Jan; 98(3):030405. PubMed ID: 17358666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable microwave-optical entanglement and conversion in multimode electro-opto-mechanics.
    Wei T; Wu D; Miao Q; Yang C; Luo J
    Opt Express; 2022 Mar; 30(6):10135-10151. PubMed ID: 35299424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Displacement-enhanced entanglement distillation of single-mode-squeezed entangled states.
    Tipsmark A; Neergaard-Nielsen JS; Andersen UL
    Opt Express; 2013 Mar; 21(6):6670-80. PubMed ID: 23546048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale continuous-variable dual-rail cluster entangled state based on spatial mode comb.
    Zhang J; Wang JJ; Yang RG; Liu K; Gao JR
    Opt Express; 2017 Oct; 25(22):27172-27181. PubMed ID: 29092196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave quantum illumination.
    Barzanjeh S; Guha S; Weedbrook C; Vitali D; Shapiro JH; Pirandola S
    Phys Rev Lett; 2015 Feb; 114(8):080503. PubMed ID: 25768743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proposal for Heralded Generation and Detection of Entangled Microwave-Optical-Photon Pairs.
    Zhong C; Wang Z; Zou C; Zhang M; Han X; Fu W; Xu M; Shankar S; Devoret MH; Tang HX; Jiang L
    Phys Rev Lett; 2020 Jan; 124(1):010511. PubMed ID: 31976686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stationary entangled radiation from micromechanical motion.
    Barzanjeh S; Redchenko ES; Peruzzo M; Wulf M; Lewis DP; Arnold G; Fink JM
    Nature; 2019 Jun; 570(7762):480-483. PubMed ID: 31243386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting Entanglement Generation in Down-Conversion with Incoherent Illumination.
    Hutter L; Lima G; Walborn SP
    Phys Rev Lett; 2020 Nov; 125(19):193602. PubMed ID: 33216610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote quantum entanglement between two micromechanical oscillators.
    Riedinger R; Wallucks A; Marinković I; Löschnauer C; Aspelmeyer M; Hong S; Gröblacher S
    Nature; 2018 Apr; 556(7702):473-477. PubMed ID: 29695844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tripartite Genuine Non-Gaussian Entanglement in Three-Mode Spontaneous Parametric Down-Conversion.
    Agustí A; Chang CWS; Quijandría F; Johansson G; Wilson CM; Sabín C
    Phys Rev Lett; 2020 Jul; 125(2):020502. PubMed ID: 32701323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust photon entanglement via quantum interference in optomechanical interfaces.
    Tian L
    Phys Rev Lett; 2013 Jun; 110(23):233602. PubMed ID: 25167490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed Entanglement of Two Optomechanical Oscillators and Furry's Hypothesis.
    Kiesewetter S; Teh RY; Drummond PD; Reid MD
    Phys Rev Lett; 2017 Jul; 119(2):023601. PubMed ID: 28753370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scheme for on-chip verification of transverse mode entanglement using the electro-optic effect.
    Bharadwaj D; Thyagarajan K; Jachura M; Karpiński M; Banaszek K
    Opt Express; 2015 Dec; 23(26):33087-98. PubMed ID: 26831977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable control of 10 dB two-mode squeezed vacuum states of light.
    Eberle T; Händchen V; Schnabel R
    Opt Express; 2013 May; 21(9):11546-53. PubMed ID: 23670011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.