These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33726215)

  • 1. Effect of decreasing pressure on soliton self-compression in higher-order modes of a gas-filled capillary.
    Wan Y; Chang W
    Opt Express; 2021 Mar; 29(5):7070-7083. PubMed ID: 33726215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of pulse self-compression in hollow capillary fibers using decreasing pressure gradients.
    Galán MF; Conejero Jarque E; San Roman J
    Opt Express; 2022 Feb; 30(5):6755-6767. PubMed ID: 35299454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber.
    Mak KF; Travers JC; Joly NY; Abdolvand A; Russell PS
    Opt Lett; 2013 Sep; 38(18):3592-5. PubMed ID: 24104822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear post-compression of a hybrid vortex mode in a gas-filled capillary.
    Vimal M; Natile M; Lupi JF; Guichard F; Descamps D; Hanna M; Georges P
    Opt Lett; 2024 Jan; 49(1):117-120. PubMed ID: 38134166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical analysis of single-cycle self-compression of near infrared pulses using high-spatial modes in capillary fibers.
    López-Zubieta BA; Jarque EC; Sola ÍJ; Roman JS
    Opt Express; 2018 Mar; 26(5):6345-6350. PubMed ID: 29529826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber.
    Adamu AI; Habib MS; Petersen CR; Lopez JEA; Zhou B; Schülzgen A; Bache M; Amezcua-Correa R; Bang O; Markos C
    Sci Rep; 2019 Mar; 9(1):4446. PubMed ID: 30872762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrashort visible energetic pulses generated by nonlinear propagation of necklace beams in capillaries.
    Crego A; Jarque EC; San Roman J
    Opt Express; 2021 Jan; 29(2):929-937. PubMed ID: 33726318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers.
    Amorim AA; Tognetti MV; Oliveira P; Silva JL; Bernardo LM; Kärtner FX; Crespo HM
    Opt Lett; 2009 Dec; 34(24):3851-3. PubMed ID: 20016635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers.
    Selim Habib M; Markos C; Bang O; Bache M
    Opt Lett; 2017 Jun; 42(11):2232-2235. PubMed ID: 28569889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Note: 15-fs, 15-μJ green pulses from two-stage temporal compressor of ytterbium laser pulses.
    Konyashchenko AV; Kostryukov PV; Losev LL; Tenyakov SY
    Rev Sci Instrum; 2012 Oct; 83(10):106106. PubMed ID: 23126820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-quality sub-100-fs optical pulse generation by fiber-optic soliton compression of gain-switched distributed-feedback laser-diode pulses in conjunction with nonlinear optical fiber loops.
    Yatsu R; Taira K; Tsuchiya M
    Opt Lett; 1999 Aug; 24(16):1172-4. PubMed ID: 18073976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly-tunable, visible ultrashort pulses generation by soliton-plasma interactions in gas-filled single-ring photonic crystal fibers.
    Huang Z; Chen Y; Yu F; Wu D; Wang D; Zhao R; Zhao Y; Gao S; Wang Y; Wang P; Leng Y
    Opt Express; 2019 Oct; 27(21):30798-30809. PubMed ID: 31684323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-energy ultrashort laser pulse compression in hollow planar waveguides.
    Akturk S; Arnold CL; Zhou B; Mysyrowicz A
    Opt Lett; 2009 May; 34(9):1462-4. PubMed ID: 19412306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient single-cycle pulse compression of an ytterbium fiber laser at 10 MHz repetition rate.
    Köttig F; Schade D; Koehler JR; Russell PSJ; Tani F
    Opt Express; 2020 Mar; 28(7):9099-9110. PubMed ID: 32225523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber.
    Chang W; Hölzer P; Travers JC; Russell PS
    Opt Lett; 2013 Aug; 38(16):2984-7. PubMed ID: 24104627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 54-fs, 10-GHz soliton generation from a polarization-maintaining dispersion-flattened dispersion-decreasing fiber pulse compressor.
    Tamura KR; Nakazawa M
    Opt Lett; 2001 Jun; 26(11):762-4. PubMed ID: 18040442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soliton pulse compression in dispersion-decreasing fiber.
    Chernikov SV; Dianov EM; Richardson DJ; Payne DN
    Opt Lett; 1993 Apr; 18(7):476-8. PubMed ID: 19802172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant dispersive wave emission in hollow capillary fibers filled with pressure gradients.
    Brahms C; Belli F; Travers JC
    Opt Lett; 2020 Aug; 45(16):4456-4459. PubMed ID: 32796982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-power two-cycle ultrafast source based on hybrid nonlinear compression.
    Lavenu L; Natile M; Guichard F; Délen X; Hanna M; Zaouter Y; Georges P
    Opt Express; 2019 Feb; 27(3):1958-1967. PubMed ID: 30732241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probe-controlled soliton frequency shift in the regime of optical event horizon.
    Gu J; Guo H; Wang S; Zeng X
    Opt Express; 2015 Aug; 23(17):22285-90. PubMed ID: 26368200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.