These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 33726338)
1. Diffraction efficiency enhancement and optimization in full-color HOE using the inhibition characteristics of the photopolymer. Shin CW; Wu HY; Kwon KC; Piao YL; Lee KY; Gil SK; Kim N Opt Express; 2021 Jan; 29(2):1175-1187. PubMed ID: 33726338 [TBL] [Abstract][Full Text] [Related]
2. Using high-diffraction-efficiency holographic optical elements in a full-color augmented reality display system. He L; Chen X; Yang Y; Liu X; Chen Y; Xu L; Gu C Opt Express; 2023 Aug; 31(18):29843-29858. PubMed ID: 37710775 [TBL] [Abstract][Full Text] [Related]
3. Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications. Akbari H; Naydenova I; Martin S Appl Opt; 2014 Mar; 53(7):1343-53. PubMed ID: 24663364 [TBL] [Abstract][Full Text] [Related]
4. Development of a photopolymer holographic lens for collimation of light from a green light-emitting diode. Keshri S; Murphy K; Toal V; Naydenova I; Martin S Appl Opt; 2018 Aug; 57(22):E163-E172. PubMed ID: 30117852 [TBL] [Abstract][Full Text] [Related]
5. Slim coherent backlight unit for holographic display using full color holographic optical elements. Kim SI; Choi CS; Morozov A; Dubynin S; Dubinin G; An J; Lee SH; Kim Y; Won K; Song H; Lee HS; Hwang S Opt Express; 2017 Oct; 25(22):26781-26791. PubMed ID: 29092163 [TBL] [Abstract][Full Text] [Related]
6. Full-Color See-Through Three-Dimensional Display Method Based on Volume Holography. Wu T; Ma J; Wang C; Wang H; Su P Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920480 [TBL] [Abstract][Full Text] [Related]
7. Holographic recording in acrylamide photopolymers: thickness limitations. Mahmud MS; Naydenova I; Pandey N; Babeva T; Jallapuram R; Martin S; Toal V Appl Opt; 2009 May; 48(14):2642-8. PubMed ID: 19424384 [TBL] [Abstract][Full Text] [Related]
8. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality. Hong K; Yeom J; Jang C; Hong J; Lee B Opt Lett; 2014 Jan; 39(1):127-30. PubMed ID: 24365839 [TBL] [Abstract][Full Text] [Related]
9. Uniformity improvement of a reconstructed-holographic image in a near-eye display system using off-axis HOE. Hwang L; Hur G; Kim J; Gentet P; Kwon S; Lee S Opt Express; 2022 Jun; 30(12):21439-21454. PubMed ID: 36224863 [TBL] [Abstract][Full Text] [Related]
10. Full-color holographic diffuser using time-scheduled iterative exposure. Piao ML; Kwon KC; Kang HJ; Lee KY; Kim N Appl Opt; 2015 Jun; 54(16):5252-9. PubMed ID: 26192691 [TBL] [Abstract][Full Text] [Related]
11. Shrinkage during holographic recording in photopolymer films determined by holographic interferometry. Moothanchery M; Bavigadda V; Toal V; Naydenova I Appl Opt; 2013 Dec; 52(35):8519-27. PubMed ID: 24513896 [TBL] [Abstract][Full Text] [Related]
12. The Chemistry and Physics of Bayfol Bruder FK; Fäcke T; Rölle T Polymers (Basel); 2017 Sep; 9(10):. PubMed ID: 30965774 [TBL] [Abstract][Full Text] [Related]
13. Design of an off-axis near-eye AR display system based on a full-color freeform holographic optical element. Wang Y; Yang T; Ni D; Cheng D; Wang Y Opt Lett; 2023 Mar; 48(5):1288-1291. PubMed ID: 36857270 [TBL] [Abstract][Full Text] [Related]
14. Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer. Piao ML; Kim N Appl Opt; 2014 Apr; 53(10):2180-6. PubMed ID: 24787179 [TBL] [Abstract][Full Text] [Related]
15. Multilayer holographic recording using a two-color-absorption photopolymer. Hirabayashi K; Kanbara H; Mori Y; Kurihara T; Shimizu M; Hiyama T Appl Opt; 2007 Dec; 46(35):8402-10. PubMed ID: 18071370 [TBL] [Abstract][Full Text] [Related]
16. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications. Marín-Sáez J; Atencia J; Chemisana D; Collados MV Opt Express; 2016 Mar; 24(6):A720-30. PubMed ID: 27136889 [TBL] [Abstract][Full Text] [Related]
17. Multiplexing recording in nickel-ion-doped photopolymer material for holographic data storage applications. Aswathy G; Rajesh CS; Sudha Kartha C Appl Opt; 2017 Feb; 56(6):1566-1573. PubMed ID: 28234360 [TBL] [Abstract][Full Text] [Related]
18. Study of the Effect of Methyldiethanolamine Initiator on the Recording Properties of Acrylamide Based Photopolymer. Rogers B; Martin S; Naydenova I Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32218188 [TBL] [Abstract][Full Text] [Related]
19. Space bandwidth product enhancement of holographic display using high-order diffraction guided by holographic optical element. Li G; Jeong J; Lee D; Yeom J; Jang C; Lee S; Lee B Opt Express; 2015 Dec; 23(26):33170-83. PubMed ID: 26831985 [TBL] [Abstract][Full Text] [Related]
20. Two-dimensional simulation of holographic data storage medium for multiplexed recording. Toishi M; Takeda T; Tanaka K; Tanaka T; Fukumoto A; Watanabe K Opt Express; 2008 Feb; 16(4):2829-39. PubMed ID: 18542367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]