These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 33726371)
21. Statistical perception of the chaotic fabrication error and the self-adaptive processing decision in ultra-precision optical polishing. Li H; Wan S; Niu Z; Guo H; Zhang L; Lu Q; Wei C; Shao J Opt Express; 2023 Feb; 31(5):7707-7724. PubMed ID: 36859896 [TBL] [Abstract][Full Text] [Related]
22. Experimental Investigation on the Effect of Surface Shape and Orientation in Magnetic Field Assisted Mass Polishing. Loh YM; Cheung CF; Wang C; Ho LT Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888877 [TBL] [Abstract][Full Text] [Related]
23. Polishing of Silicon Nitride Ceramic Balls by Clustered Magnetorheological Finish. Xiao XL; Li GX; Mei HJ; Yan QS; Lin HT; Zhang FL Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32183344 [TBL] [Abstract][Full Text] [Related]
24. The Cause of Ribbon Fluctuation in Magnetorheological Finishing and Its Influence on Surface Mid-Spatial Frequency Error. Wang B; Shi F; Tie G; Zhang W; Song C; Tian Y; Shen Y Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630164 [TBL] [Abstract][Full Text] [Related]
25. Conformal smoothing of mid-spatial frequency surface error for nano-accuracy Continuous Phase Plates (CPP). Song C; Zhang W; Shi F; Lin Z; Nie X Sci Rep; 2020 Feb; 10(1):2579. PubMed ID: 32054930 [TBL] [Abstract][Full Text] [Related]
26. Study on the influence of a magnetorheological finishing path on the mid-frequency errors of optical element surfaces. Chen C; Dai Y; Hu H; Guan C Opt Express; 2024 May; 32(11):19133-19145. PubMed ID: 38859055 [TBL] [Abstract][Full Text] [Related]
27. Combined processing strategy based on magnetorheological finishing for monocrystalline silicon x-ray mirrors. Liu S; Wang H; Hou J; Zhang Q; Chen X; Zhong B; Zhang M Appl Opt; 2022 Jul; 61(19):5575-5584. PubMed ID: 36255784 [TBL] [Abstract][Full Text] [Related]
28. Modeling and validation of polishing tool influence functions for manufacturing segments for an extremely large telescope. Li H; Walker D; Yu G; Zhang W Appl Opt; 2013 Aug; 52(23):5781-7. PubMed ID: 23938432 [TBL] [Abstract][Full Text] [Related]
29. Research on the influence of the non-stationary effect of the magnetorheological finishing removal function on mid-frequency errors of optical component surfaces. Wang B; Tie G; Shi F; Song C; Guo S Opt Express; 2023 Oct; 31(21):35016-35031. PubMed ID: 37859243 [TBL] [Abstract][Full Text] [Related]
30. Line contact ring magnetorheological finishing process for precision polishing of optics. Kumar Baghel P; Singh Gavel K; Sayeed Khan G; Kumar R Appl Opt; 2022 Apr; 61(10):2582-2590. PubMed ID: 35471326 [TBL] [Abstract][Full Text] [Related]
31. Effects of temperature on the removal efficiency of KDP crystal during the process of magnetorheological water-dissolution polishing. Zhang Y; Dai Y; Tie G; Hu H Appl Opt; 2016 Oct; 55(29):8308-8315. PubMed ID: 27828080 [TBL] [Abstract][Full Text] [Related]
32. Evaluation and compensation of a kinematic error to enhance prepolishing accuracy for large aspheric surfaces by robotic bonnet technology. Zhong B; Xu Q; Wang J; Deng W; Chen X Opt Express; 2020 Aug; 28(17):25085-25100. PubMed ID: 32907038 [TBL] [Abstract][Full Text] [Related]
33. Process Chain for Ultra-Precision and High-Efficiency Manufacturing of Large-Aperture Silicon Carbide Aspheric Mirrors. Zhong B; Wu W; Wang J; Zhou L; Hou J; Ji B; Deng W; Wei Q; Wang C; Xu Q Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37420971 [TBL] [Abstract][Full Text] [Related]
34. Belt-MRF for large aperture mirrors. Ren K; Luo X; Zheng L; Bai Y; Li L; Hu H; Zhang X Opt Express; 2014 Aug; 22(16):19262-76. PubMed ID: 25321011 [TBL] [Abstract][Full Text] [Related]
35. A Method of Restraining the Adverse Effects of Grinding Marks on Small Aperture Aspheric Mirrors. Bao J; Peng X; Hu H; Lai T Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144044 [TBL] [Abstract][Full Text] [Related]
36. Electromagnetic optimization of the integrated magnetorheological jet polishing tool and its application in millimeter-scale discontinuous structure processing. Yang H; Cheng H; Wu H; Wang T Appl Opt; 2017 Apr; 56(11):3162-3170. PubMed ID: 28414376 [TBL] [Abstract][Full Text] [Related]
37. A Method for Optimizing the Dwell Time of Optical Components in Magnetorheological Finishing Based on Particle Swarm Optimization. Gao B; Fan B; Wang J; Wu X; Xin Q Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38276846 [TBL] [Abstract][Full Text] [Related]
38. Highly Accurate Digital Processing of Large Stroke Guideway with an Optical Material-Corning Code 7972. Zhang H; Dai Y; Lai T Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300728 [TBL] [Abstract][Full Text] [Related]
39. Compensating for velocity truncation during subaperture polishing by controllable and time-variant tool influence functions. Dong Z; Cheng H; Tam HY Appl Opt; 2015 Feb; 54(5):1167-74. PubMed ID: 25968037 [TBL] [Abstract][Full Text] [Related]
40. Optimized pre-thinning procedures of ion-beam thinning for TEM sample preparation by magnetorheological polishing. Luo H; Yin S; Zhang G; Liu C; Tang Q; Guo M Ultramicroscopy; 2017 Oct; 181():165-172. PubMed ID: 28578300 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]