These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 33726423)

  • 1. Displacement-agnostic coherent imaging through scatter with an interpretable deep neural network.
    Li Y; Cheng S; Xue Y; Tian L
    Opt Express; 2021 Jan; 29(2):2244-2257. PubMed ID: 33726423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image reconstruction through dynamic scattering media based on deep learning.
    Sun Y; Shi J; Sun L; Fan J; Zeng G
    Opt Express; 2019 May; 27(11):16032-16046. PubMed ID: 31163790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust single-shot 3D fluorescence imaging in scattering media with a simulator-trained neural network.
    Alido J; Greene J; Xue Y; Hu G; Li Y; Gilmore M; Monk KJ; Dibenedictis BT; Davison IG; Tian L
    ArXiv; 2023 Dec; ():. PubMed ID: 36994164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust single-shot 3D fluorescence imaging in scattering media with a simulator-trained neural network.
    Alido J; Greene J; Xue Y; Hu G; Gilmore M; Monk KJ; DiBenedictis BT; Davison IG; Tian L; Li Y
    Opt Express; 2024 Feb; 32(4):6241-6257. PubMed ID: 38439332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Object classification through scattering media with deep learning on time resolved measurement.
    Satat G; Tancik M; Gupta O; Heshmat B; Raskar R
    Opt Express; 2017 Jul; 25(15):17466-17479. PubMed ID: 28789238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scatter correction of cone-beam CT using a deep residual convolution neural network (DRCNN).
    Jiang Y; Yang C; Yang P; Hu X; Luo C; Xue Y; Xu L; Hu X; Zhang L; Wang J; Sheng K; Niu T
    Phys Med Biol; 2019 Jul; 64(14):145003. PubMed ID: 31117060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning based coherent diffraction imaging of dynamic scattering media.
    Liu Y; Hu G; Chu X; Liu Z; Zhou L
    Opt Express; 2023 Dec; 31(26):44410-44423. PubMed ID: 38178513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.
    Wang CJ; Hamm CA; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Weinreb JC; Duncan JS; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3348-3357. PubMed ID: 31093705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locating and Imaging through Scattering Medium in a Large Depth.
    Zhu S; Guo E; Cui Q; Bai L; Han J; Zheng D
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Plasmonic Resonance Scattering Imaging Analysis via Deep Learning.
    Song MK; Chen SX; Hu PP; Huang CZ; Zhou J
    Anal Chem; 2021 Feb; 93(4):2619-2626. PubMed ID: 33427440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transfer learning method with deep residual network for pediatric pneumonia diagnosis.
    Liang G; Zheng L
    Comput Methods Programs Biomed; 2020 Apr; 187():104964. PubMed ID: 31262537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards Interpretable Skin Lesion Classification with Deep Learning Models.
    Xiang A; Wang F
    AMIA Annu Symp Proc; 2019; 2019():1246-1255. PubMed ID: 32308922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TSMPN-PSI: high-performance polarization scattering imaging based on three-stage multi-pipeline networks.
    Fan X; Lin B; Guo K; Liu B; Guo Z
    Opt Express; 2023 Nov; 31(23):38097-38113. PubMed ID: 38017925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous Inverse Design of Materials and Structures via Deep Learning: Demonstration of Dipole Resonance Engineering Using Core-Shell Nanoparticles.
    So S; Mun J; Rho J
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24264-24268. PubMed ID: 31199610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepSCI: scalable speckle correlation imaging using physics-enhanced deep learning.
    Tang Z; Wang F; Fu Z; Zheng S; Jin Y; Situ G
    Opt Lett; 2023 May; 48(9):2285-2288. PubMed ID: 37126255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive 3D descattering with a dynamic synthesis network.
    Tahir W; Wang H; Tian L
    Light Sci Appl; 2022 Feb; 11(1):42. PubMed ID: 35210401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scatter-plate microscopy with spatially coherent illumination and temporal scatter modulation.
    Ludwig S; Ruchka P; Pedrini G; Peng X; Osten W
    Opt Express; 2021 Feb; 29(3):4530-4546. PubMed ID: 33771029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust and interpretable end-to-end deep learning model for cytometry data.
    Hu Z; Tang A; Singh J; Bhattacharya S; Butte AJ
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21373-21380. PubMed ID: 32801215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive inverse mapping: a model-free semi-supervised learning approach towards robust imaging through dynamic scattering media.
    Hu X; Zhao J; Antonio-Lopez JE; Gausmann S; Correa RA; Schülzgen A
    Opt Express; 2023 Apr; 31(9):14343-14357. PubMed ID: 37157300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretable Fine-Grained Phenotypes of Subcellular Dynamics via Unsupervised Deep Learning.
    Wang C; Choi HJ; Woodbury L; Lee K
    Adv Sci (Weinh); 2024 Sep; ():e2403547. PubMed ID: 39239705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.