BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33726670)

  • 1. Pathway size matters: the influence of pathway granularity on over-representation (enrichment analysis) statistics.
    Karp PD; Midford PE; Caspi R; Khodursky A
    BMC Genomics; 2021 Mar; 22(1):191. PubMed ID: 33726670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data.
    Marco-Ramell A; Palau-Rodriguez M; Alay A; Tulipani S; Urpi-Sarda M; Sanchez-Pla A; Andres-Lacueva C
    BMC Bioinformatics; 2018 Jan; 19(1):1. PubMed ID: 29291722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolomic network analysis of estrogen-stimulated MCF-7 cells: a comparison of overrepresentation analysis, quantitative enrichment analysis and pathway analysis versus metabolite network analysis.
    Maertens A; Bouhifd M; Zhao L; Odwin-DaCosta S; Kleensang A; Yager JD; Hartung T
    Arch Toxicol; 2017 Jan; 91(1):217-230. PubMed ID: 27039105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The outcomes of pathway database computations depend on pathway ontology.
    Green ML; Karp PD
    Nucleic Acids Res; 2006; 34(13):3687-97. PubMed ID: 16893953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IPAD: the Integrated Pathway Analysis Database for Systematic Enrichment Analysis.
    Zhang F; Drabier R
    BMC Bioinformatics; 2012; 13 Suppl 15(Suppl 15):S7. PubMed ID: 23046449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathway analysis in metabolomics: Recommendations for the use of over-representation analysis.
    Wieder C; Frainay C; Poupin N; Rodríguez-Mier P; Vinson F; Cooke J; Lai RP; Bundy JG; Jourdan F; Ebbels T
    PLoS Comput Biol; 2021 Sep; 17(9):e1009105. PubMed ID: 34492007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites.
    Zhang B; Hu S; Baskin E; Patt A; Siddiqui JK; Mathé EA
    Metabolites; 2018 Feb; 8(1):. PubMed ID: 29470400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redundancy control in pathway databases (ReCiPa): an application for improving gene-set enrichment analysis in Omics studies and "Big data" biology.
    Vivar JC; Pemu P; McPherson R; Ghosh S
    OMICS; 2013 Aug; 17(8):414-22. PubMed ID: 23758478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FELLA: an R package to enrich metabolomics data.
    Picart-Armada S; Fernández-Albert F; Vinaixa M; Yanes O; Perera-Lluna A
    BMC Bioinformatics; 2018 Dec; 19(1):538. PubMed ID: 30577788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Metabolomics Operations at BioCyc.org.
    Karp PD; Billington R; Holland TA; Kothari A; Krummenacker M; Weaver D; Latendresse M; Paley S
    Metabolites; 2015 May; 5(2):291-310. PubMed ID: 26011592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating bioinformatics approaches for a comprehensive interpretation of metabolomics datasets.
    Barupal DK; Fan S; Fiehn O
    Curr Opin Biotechnol; 2018 Dec; 54():1-9. PubMed ID: 29413745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Null diffusion-based enrichment for metabolomics data.
    Picart-Armada S; Fernández-Albert F; Vinaixa M; Rodríguez MA; Aivio S; Stracker TH; Yanes O; Perera-Lluna A
    PLoS One; 2017; 12(12):e0189012. PubMed ID: 29211807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of topology-based pathway enrichment analysis methods.
    Ma J; Shojaie A; Michailidis G
    BMC Bioinformatics; 2019 Nov; 20(1):546. PubMed ID: 31684881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets.
    Barupal DK; Fiehn O
    Sci Rep; 2017 Nov; 7(1):14567. PubMed ID: 29109515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meta-analysis of pathway enrichment: combining independent and dependent omics data sets.
    Kaever A; Landesfeind M; Feussner K; Morgenstern B; Feussner I; Meinicke P
    PLoS One; 2014; 9(2):e89297. PubMed ID: 24586671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GeneSCF: a real-time based functional enrichment tool with support for multiple organisms.
    Subhash S; Kanduri C
    BMC Bioinformatics; 2016 Sep; 17(1):365. PubMed ID: 27618934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating untargeted metabolomics, genetically informed causal inference, and pathway enrichment to define the obesity metabolome.
    Hsu YH; Astley CM; Cole JB; Vedantam S; Mercader JM; Metspalu A; Fischer K; Fortney K; Morgen EK; Gonzalez C; Gonzalez ME; Esko T; Hirschhorn JN
    Int J Obes (Lond); 2020 Jul; 44(7):1596-1606. PubMed ID: 32467615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparse PLS-Based Method for Overlapping Metabolite Set Enrichment Analysis.
    Deng L; Ma L; Cheng KK; Xu X; Raftery D; Dong J
    J Proteome Res; 2021 Jun; 20(6):3204-3213. PubMed ID: 34002606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional statistical recoupling for the identification of perturbed metabolic networks from NMR spectroscopy.
    Blaise BJ; Navratil V; Domange C; Shintu L; Dumas ME; Elena-Herrmann B; Emsley L; Toulhoat P
    J Proteome Res; 2010 Sep; 9(9):4513-20. PubMed ID: 20590164
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.