These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 33726763)
1. Ugandan stakeholder hopes and concerns about gene drive mosquitoes for malaria control: new directions for gene drive risk governance. Hartley S; Smith RDJ; Kokotovich A; Opesen C; Habtewold T; Ledingham K; Raymond B; Rwabukwali CB Malar J; 2021 Mar; 20(1):149. PubMed ID: 33726763 [TBL] [Abstract][Full Text] [Related]
2. Small-scale release of non-gene drive mosquitoes in Burkina Faso: from engagement implementation to assessment, a learning journey. Pare Toe L; Barry N; Ky AD; Kekele S; Meda W; Bayala K; Drabo M; Thizy D; Diabate A Malar J; 2021 Oct; 20(1):395. PubMed ID: 34627240 [TBL] [Abstract][Full Text] [Related]
3. Problem formulation for gene drive mosquitoes designed to reduce malaria transmission in Africa: results from four regional consultations 2016-2018. Teem JL; Ambali A; Glover B; Ouedraogo J; Makinde D; Roberts A Malar J; 2019 Oct; 18(1):347. PubMed ID: 31615576 [TBL] [Abstract][Full Text] [Related]
4. Hybrid mosquitoes? Evidence from rural Tanzania on how local communities conceptualize and respond to modified mosquitoes as a tool for malaria control. Finda MF; Okumu FO; Minja E; Njalambaha R; Mponzi W; Tarimo BB; Chaki P; Lezaun J; Kelly AH; Christofides N Malar J; 2021 Mar; 20(1):134. PubMed ID: 33676493 [TBL] [Abstract][Full Text] [Related]
5. Co-developing a common glossary with stakeholders for engagement on new genetic approaches for malaria control in a local African setting. Chemonges Wanyama E; Dicko B; Pare Toe L; Coulibaly MB; Barry N; Bayala Traore K; Diabate A; Drabo M; Kayondo JK; Kekele S; Kodio S; Ky AD; Linga RR; Magala E; Meda WI; Mukwaya S; Namukwaya A; Robinson B; Samoura H; Sanogo K; Thizy D; Traoré F Malar J; 2021 Jan; 20(1):53. PubMed ID: 33478519 [TBL] [Abstract][Full Text] [Related]
6. Experimenting with co-development: A qualitative study of gene drive research for malaria control in Mali. Hartley S; Ledingham K; Owen R; Leonelli S; Diarra S; Diop S Soc Sci Med; 2021 May; 276():113850. PubMed ID: 33839526 [TBL] [Abstract][Full Text] [Related]
7. Operationalizing stakeholder engagement for gene drive research in malaria elimination in Africa-translating guidance into practice. Pare Toe L; Dicko B; Linga R; Barry N; Drabo M; Sykes N; Thizy D Malar J; 2022 Jul; 21(1):225. PubMed ID: 35870909 [TBL] [Abstract][Full Text] [Related]
8. Perspectives of African stakeholders on gene drives for malaria control and elimination: a multi-country survey. Finda MF; Juma EO; Kahamba NF; Mthawanji RS; Sambo M; Emidi B; Wiener S; O'Brochta D; Santos M; James S; Okumu FO Malar J; 2023 Dec; 22(1):384. PubMed ID: 38129897 [TBL] [Abstract][Full Text] [Related]
9. Pathway to Deployment of Gene Drive Mosquitoes as a Potential Biocontrol Tool for Elimination of Malaria in Sub-Saharan Africa: Recommendations of a Scientific Working Group James S; Collins FH; Welkhoff PA; Emerson C; Godfray HCJ; Gottlieb M; Greenwood B; Lindsay SW; Mbogo CM; Okumu FO; Quemada H; Savadogo M; Singh JA; Tountas KH; Touré YT Am J Trop Med Hyg; 2018 Jun; 98(6_Suppl):1-49. PubMed ID: 29882508 [TBL] [Abstract][Full Text] [Related]
10. Control of malaria-transmitting mosquitoes using gene drives. Nolan T Philos Trans R Soc Lond B Biol Sci; 2021 Feb; 376(1818):20190803. PubMed ID: 33357060 [TBL] [Abstract][Full Text] [Related]
11. Predicting the spread and persistence of genetically modified dominant sterile male mosquitoes. Ickowicz A; Foster SD; Hosack GR; Hayes KR Parasit Vectors; 2021 Sep; 14(1):480. PubMed ID: 34530904 [TBL] [Abstract][Full Text] [Related]
12. An Ethical Overview of the CRISPR-Based Elimination of Anopheles gambiae to Combat Malaria. Wise IJ; Borry P J Bioeth Inq; 2022 Sep; 19(3):371-380. PubMed ID: 35175513 [TBL] [Abstract][Full Text] [Related]
13. Next-generation gene drive for population modification of the malaria vector mosquito, Carballar-Lejarazú R; Ogaugwu C; Tushar T; Kelsey A; Pham TB; Murphy J; Schmidt H; Lee Y; Lanzaro GC; James AA Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22805-22814. PubMed ID: 32839345 [TBL] [Abstract][Full Text] [Related]
15. Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa. Connolly JB; Mumford JD; Fuchs S; Turner G; Beech C; North AR; Burt A Malar J; 2021 Mar; 20(1):170. PubMed ID: 33781254 [TBL] [Abstract][Full Text] [Related]
16. Modelling the potential of genetic control of malaria mosquitoes at national scale. North AR; Burt A; Godfray HCJ BMC Biol; 2019 Mar; 17(1):26. PubMed ID: 30922310 [TBL] [Abstract][Full Text] [Related]
17. Motivations and expectations driving community participation in entomological research projects: Target Malaria as a case study in Bana, Western Burkina Faso. Barry N; Toé P; Pare Toe L; Lezaun J; Drabo M; Dabiré RK; Diabate A Malar J; 2020 Jun; 19(1):199. PubMed ID: 32503546 [TBL] [Abstract][Full Text] [Related]
18. Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement. Hoermann A; Tapanelli S; Capriotti P; Del Corsano G; Masters EK; Habtewold T; Christophides GK; Windbichler N Elife; 2021 Apr; 10():. PubMed ID: 33845943 [TBL] [Abstract][Full Text] [Related]