These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 33726930)
21. Combined effect of two different polymorphic sequences within the beta globin gene cluster on the level of HbF. Gonçalves I; Ducrocq R; Lavinha J; Nogueira PJ; Peres MJ; Picanço I; Correia E; Reis AB; Silva C; Krishnamoorthy R; Almeida LO Am J Hematol; 1998 Apr; 57(4):269-76. PubMed ID: 9544969 [TBL] [Abstract][Full Text] [Related]
22. Genome editing strategies for fetal hemoglobin induction in beta-hemoglobinopathies. Demirci S; Leonard A; Tisdale JF Hum Mol Genet; 2020 Sep; 29(R1):R100-R106. PubMed ID: 32406490 [TBL] [Abstract][Full Text] [Related]
23. The intrinsic genetic and epigenetic regulator factors as therapeutic targets, and the effect on fetal globin gene expression. Adelvand P; Hamid M; Sardari S Expert Rev Hematol; 2018 Jan; 11(1):71-81. PubMed ID: 29149573 [TBL] [Abstract][Full Text] [Related]
24. Target-based drug discovery for [Formula: see text]-globin disorders: drug target prediction using quantitative modeling with hybrid functional Petri nets. Mehraei M; Bashirov R; Tüzmen Ş J Bioinform Comput Biol; 2016 Oct; 14(5):1650026. PubMed ID: 27431020 [TBL] [Abstract][Full Text] [Related]
25. Identification of fetal hemoglobin-inducing agents using the human leukemia KU812 cell line. Zein S; Li W; Ramakrishnan V; Lou TF; Sivanand S; Mackie A; Pace B Exp Biol Med (Maywood); 2010 Nov; 235(11):1385-94. PubMed ID: 20975082 [TBL] [Abstract][Full Text] [Related]
26. Molecular basis of hereditary persistence of fetal hemoglobin. Forget BG Ann N Y Acad Sci; 1998 Jun; 850():38-44. PubMed ID: 9668525 [TBL] [Abstract][Full Text] [Related]
27. Hemoglobin Kenya composed of alpha- and ((A)gammabeta)-fusion-globin chains, associated with hereditary persistence of fetal hemoglobin. Wilcox I; Boettger K; Greene L; Malek A; Davis L; Steinberg MH; Luo HY; Chui DH Am J Hematol; 2009 Jan; 84(1):55-8. PubMed ID: 19006227 [TBL] [Abstract][Full Text] [Related]
28. Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies. Magrin E; Miccio A; Cavazzana M Blood; 2019 Oct; 134(15):1203-1213. PubMed ID: 31467062 [TBL] [Abstract][Full Text] [Related]
29. The search for genetic modifiers of disease severity in the β-hemoglobinopathies. Lettre G Cold Spring Harb Perspect Med; 2012 Oct; 2(10):. PubMed ID: 23028136 [TBL] [Abstract][Full Text] [Related]
30. [Regulation of the β-globin gene family expression, useful in the search for new therapeutic targets for hemoglobinopathies]. Scheps KG; Varela V Medicina (B Aires); 2016; 76(6):383-389. PubMed ID: 27959850 [TBL] [Abstract][Full Text] [Related]
31. A natural DNMT1 mutation elevates the fetal hemoglobin level via epigenetic derepression of the γ-globin gene in β-thalassemia. Gong Y; Zhang X; Zhang Q; Zhang Y; Ye Y; Yu W; Shao C; Yan T; Huang J; Zhong J; Wang L; Li Y; Wang L; Xu X Blood; 2021 Mar; 137(12):1652-1657. PubMed ID: 33227819 [TBL] [Abstract][Full Text] [Related]
32. [Effect of genetic modifiers on the clinical severity of β-thalassemia]. Zhang QQ; Shang X; Lin WY; Xu XM Yi Chuan; 2019 Aug; 41(8):669-676. PubMed ID: 31447418 [TBL] [Abstract][Full Text] [Related]
33. miR-30a regulates γ-globin expression in erythoid precursors of intermedia thalassemia through targeting BCL11A. Gholampour MA; Asadi M; Naderi M; Azarkeivan A; Soleimani M; Atashi A Mol Biol Rep; 2020 May; 47(5):3909-3918. PubMed ID: 32406020 [TBL] [Abstract][Full Text] [Related]
34. Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer. Wilber A; Hargrove PW; Kim YS; Riberdy JM; Sankaran VG; Papanikolaou E; Georgomanoli M; Anagnou NP; Orkin SH; Nienhuis AW; Persons DA Blood; 2011 Mar; 117(10):2817-26. PubMed ID: 21156846 [TBL] [Abstract][Full Text] [Related]
35. Plastrum testudinis induces γ-globin gene expression through epigenetic histone modifications within the γ-globin gene promoter via activation of the p38 MAPK signaling pathway. Qian X; Chen J; Zhao D; Guo L; Qian X Int J Mol Med; 2013 Jun; 31(6):1418-28. PubMed ID: 23588991 [TBL] [Abstract][Full Text] [Related]
36. A case of hereditary persistence of fetal hemoglobin caused by a gene not linked to the beta-globin cluster. Martinez G; Novelletto A; Di Rienzo A; Felicetti L; Colombo B Hum Genet; 1989 Jul; 82(4):335-7. PubMed ID: 2472351 [TBL] [Abstract][Full Text] [Related]
38. Targeted fetal hemoglobin induction for treatment of beta hemoglobinopathies. Perrine SP; Pace BS; Faller DV Hematol Oncol Clin North Am; 2014 Apr; 28(2):233-48. PubMed ID: 24589264 [TBL] [Abstract][Full Text] [Related]
39. Development of a double shmiR lentivirus effectively targeting both BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to treat β-hemoglobinopathies. Liu B; Brendel C; Vinjamur DS; Zhou Y; Harris C; McGuinness M; Manis JP; Bauer DE; Xu H; Williams DA Mol Ther; 2022 Aug; 30(8):2693-2708. PubMed ID: 35526095 [TBL] [Abstract][Full Text] [Related]
40. Genetic Basis and Genetic Modifiers of β-Thalassemia and Sickle Cell Disease. Thein SL Adv Exp Med Biol; 2017; 1013():27-57. PubMed ID: 29127676 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]