These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33727087)

  • 1. Response variations can promote the efficiency of task switching: Electrophysiological evidence.
    Zhuo B; Chen Y; Zhu M; Cao B; Li F
    Neuropsychologia; 2021 Jun; 156():107828. PubMed ID: 33727087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. More change in task repetition, less cost in task switching: Behavioral and event-related potential evidence.
    Zhuo B; Zhu M; Cao B; Li F
    Eur J Neurosci; 2021 Apr; 53(8):2553-2566. PubMed ID: 33449386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological correlates of residual switch costs.
    Gajewski PD; Kleinsorge T; Falkenstein M
    Cortex; 2010 Oct; 46(9):1138-48. PubMed ID: 19717147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconfiguration of response-set in task switching: Event-related potential evidence.
    Xie L; Cao B; Chen Y; Wu J; Li F
    Eur J Neurosci; 2023 Mar; 57(5):796-808. PubMed ID: 36601787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of the P3 in the task-switching paradigm.
    Gajewski PD; Falkenstein M
    Brain Res; 2011 Sep; 1411():87-97. PubMed ID: 21803343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of response-effector switching using event-related potentials.
    Hsieh S; Wu M; Lin F
    Biol Psychol; 2014 Dec; 103():332-48. PubMed ID: 25448134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological correlates of the cognitive control processes underpinning mixing and switching costs.
    Tarantino V; Mazzonetto I; Vallesi A
    Brain Res; 2016 Sep; 1646():160-173. PubMed ID: 27238463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching.
    Adrover-Roig D; Barceló F
    Cortex; 2010 Apr; 46(4):434-50. PubMed ID: 19889406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task switching and novelty processing activate a common neural network for cognitive control.
    Barcelo F; Escera C; Corral MJ; Periáñez JA
    J Cogn Neurosci; 2006 Oct; 18(10):1734-48. PubMed ID: 17014377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognitive control is modulated by hierarchical complexity of task switching: An event-related potential study.
    Wu J; Chen Y; Li Z; Li F
    Behav Brain Res; 2022 Sep; 434():114025. PubMed ID: 35901957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Task switching and bilingualism in young and older adults: A behavioral and electrophysiological investigation.
    López Zunini RA; Morrison C; Kousaie S; Taler V
    Neuropsychologia; 2019 Oct; 133():107186. PubMed ID: 31513809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive flexibility and N2/P3 event-related brain potentials.
    Kopp B; Steinke A; Visalli A
    Sci Rep; 2020 Jun; 10(1):9859. PubMed ID: 32555267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proactive and reactive control differ between task switching and response rule switching: Event-related potential evidence.
    Chen Y; Cao B; Xie L; Wu J; Li F
    Neuropsychologia; 2022 Jul; 172():108272. PubMed ID: 35597267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconfiguration of response rule is more difficult than that of task goal: Behavior and electrophysiological evidence.
    Chen Y; Wu J; Li F
    Neurosci Lett; 2022 Mar; 774():136517. PubMed ID: 35149197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An information theory account of late frontoparietal ERP positivities in cognitive control.
    Barceló F; Cooper PS
    Psychophysiology; 2018 Mar; 55(3):. PubMed ID: 28295342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural mechanisms underlying the cost of task switching: an ERP study.
    Li L; Wang M; Zhao QJ; Fogelson N
    PLoS One; 2012; 7(7):e42233. PubMed ID: 22860090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of foreknowledge and task-set shifting as mirrored in cue- and target-locked event-related potentials.
    Finke M; Escera C; Barceló F
    PLoS One; 2012; 7(11):e49486. PubMed ID: 23152912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological correlates of preparation and implementation for different types of task shifts.
    Hsieh S; Wu M
    Brain Res; 2011 Nov; 1423():41-52. PubMed ID: 22000079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cognitive control mechanisms revealed by ERP and fMRI: evidence from repeated task-switching.
    Swainson R; Cunnington R; Jackson GM; Rorden C; Peters AM; Morris PG; Jackson SR
    J Cogn Neurosci; 2003 Aug; 15(6):785-99. PubMed ID: 14511532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A carry-over task rule in task switching: an ERP investigation using a Go/Nogo paradigm.
    Umebayashi K; Okita T
    Biol Psychol; 2013 Feb; 92(2):295-300. PubMed ID: 23182873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.