BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

680 related articles for article (PubMed ID: 33727193)

  • 1. 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing.
    Li J; Yuan H; Chandrakar A; Moroni L; Habibovic P
    Acta Biomater; 2021 May; 126():496-510. PubMed ID: 33727193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical behavior of bone scaffolds made of additive manufactured tricalciumphosphate and titanium alloy under different loading conditions.
    Wieding J; Fritsche A; Heinl P; Körner C; Cornelsen M; Seitz H; Mittelmeier W; Bader R
    J Appl Biomater Funct Mater; 2013 Dec; 11(3):e159-66. PubMed ID: 23599179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extrusion-based additive manufacturing of Mg-Zn/bioceramic composite scaffolds.
    Dong J; Lin P; Putra NE; Tümer N; Leeflang MA; Huan Z; Fratila-Apachitei LE; Chang J; Zadpoor AA; Zhou J
    Acta Biomater; 2022 Oct; 151():628-646. PubMed ID: 35940565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds.
    Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T
    J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration.
    He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J
    Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds.
    Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U
    Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants.
    Li JP; de Wijn JR; van Blitterswijk CA; de Groot K
    J Biomed Mater Res A; 2010 Jan; 92(1):33-42. PubMed ID: 19165798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-tricalcium phosphate enhanced mechanical and biological properties of 3D-printed polyhydroxyalkanoates scaffold for bone tissue engineering.
    Ye X; Zhang Y; Liu T; Chen Z; Chen W; Wu Z; Wang Y; Li J; Li C; Jiang T; Zhang Y; Wu H; Xu X
    Int J Biol Macromol; 2022 Jun; 209(Pt A):1553-1561. PubMed ID: 35439474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 369Fabrication of 3D gel-printed β-tricalcium phosphate/titanium dioxide porous scaffolds for cancellous bone tissue engineering.
    Xulin H; Hu L; Liang Q; Shuhao Y; Haoming W; Chao P; Yamei Z; Hai L; Hua Y; Kainan L
    Int J Bioprint; 2023; 9(2):673. PubMed ID: 37065658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment.
    Li JP; de Wijn JR; Van Blitterswijk CA; de Groot K
    Biomaterials; 2006 Mar; 27(8):1223-35. PubMed ID: 16169073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds.
    Bose S; Banerjee D; Robertson S; Vahabzadeh S
    Ann Biomed Eng; 2018 Sep; 46(9):1241-1253. PubMed ID: 29728785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration.
    Schmidleithner C; Malferrari S; Palgrave R; Bomze D; Schwentenwein M; Kalaskar DM
    Biomed Mater; 2019 Jun; 14(4):045018. PubMed ID: 31170697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass.
    Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD
    J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration.
    Putra NE; Borg KGN; Diaz-Payno PJ; Leeflang MA; Klimopoulou M; Taheri P; Mol JMC; Fratila-Apachitei LE; Huan Z; Chang J; Zhou J; Zadpoor AA
    Acta Biomater; 2022 Aug; 148():355-373. PubMed ID: 35690326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting.
    Shah FA; Omar O; Suska F; Snis A; Matic A; Emanuelsson L; Norlindh B; Lausmaa J; Thomsen P; Palmquist A
    Acta Biomater; 2016 May; 36():296-309. PubMed ID: 27000553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications.
    Li F; Li J; Kou H; Huang T; Zhou L
    J Mater Sci Mater Med; 2015 Sep; 26(9):233. PubMed ID: 26384823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model.
    Ke D; Dernell W; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1549-59. PubMed ID: 25504889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.
    Montufar EB; Casas-Luna M; Horynová M; Tkachenko S; Fohlerová Z; Diaz-de-la-Torre S; Dvořák K; Čelko L; Kaiser J
    Acta Biomater; 2018 Apr; 70():293-303. PubMed ID: 29432984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.