BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33727195)

  • 1. The impact of antifouling layers in fabricating bioactive surfaces.
    Chen Q; Zhang D; Gu J; Zhang H; Wu X; Cao C; Zhang X; Liu R
    Acta Biomater; 2021 May; 126():45-62. PubMed ID: 33727195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zwitterionic materials for antifouling membrane surface construction.
    He M; Gao K; Zhou L; Jiao Z; Wu M; Cao J; You X; Cai Z; Su Y; Jiang Z
    Acta Biomater; 2016 Aug; 40():142-152. PubMed ID: 27025359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ.
    Leng C; Sun S; Zhang K; Jiang S; Chen Z
    Acta Biomater; 2016 Aug; 40():6-15. PubMed ID: 26923530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bioactive elastin-like recombinamer reduces unspecific protein adsorption and enhances cell response on titanium surfaces.
    Salvagni E; Berguig G; Engel E; Rodriguez-Cabello JC; Coullerez G; Textor M; Planell JA; Gil FJ; Aparicio C
    Colloids Surf B Biointerfaces; 2014 Feb; 114():225-33. PubMed ID: 24200950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-fouling bioactive surfaces.
    Yu Q; Zhang Y; Wang H; Brash J; Chen H
    Acta Biomater; 2011 Apr; 7(4):1550-7. PubMed ID: 21195214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Antifouling PEG Layer on the Performance of Functional Peptides in Regulating Cell Behaviors.
    Chen Q; Yu S; Zhang D; Zhang W; Zhang H; Zou J; Mao Z; Yuan Y; Gao C; Liu R
    J Am Chem Soc; 2019 Oct; 141(42):16772-16780. PubMed ID: 31573191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide-functionalized poly[oligo(ethylene glycol) methacrylate] brushes on dopamine-coated stainless steel for controlled cell adhesion.
    Alas GR; Agarwal R; Collard DM; García AJ
    Acta Biomater; 2017 Sep; 59():108-116. PubMed ID: 28655657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zwitterionic surface grafting of epoxylated sulfobetaine copolymers for the development of stealth biomaterial interfaces.
    Chou YN; Wen TC; Chang Y
    Acta Biomater; 2016 Aug; 40():78-91. PubMed ID: 27045347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces.
    Zhao C; Li L; Wang Q; Yu Q; Zheng J
    Langmuir; 2011 Apr; 27(8):4906-13. PubMed ID: 21405141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired surfaces with wettability for antifouling application.
    Li Z; Guo Z
    Nanoscale; 2019 Dec; 11(47):22636-22663. PubMed ID: 31755511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multipurpose Antifouling Coating of Solid Surfaces with the Marine-Derived Polymer Fucoidan.
    Jeong Y; Thuy LT; Ki SH; Ko S; Kim S; Cho WK; Choi JS; Kang SM
    Macromol Biosci; 2018 Oct; 18(10):e1800137. PubMed ID: 30113760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property.
    Kwon HJ; Lee Y; Phuong LT; Seon GM; Kim E; Park JC; Yoon H; Park KD
    Acta Biomater; 2017 Oct; 61():169-179. PubMed ID: 28782724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Fouling Characteristics of Ultrathin Zwitterionic Cysteine SAMs.
    Lin P; Chuang TL; Chen PZ; Lin CW; Gu FX
    Langmuir; 2019 Feb; 35(5):1756-1767. PubMed ID: 30056710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers.
    Wagner VE; Koberstein JT; Bryers JD
    Biomaterials; 2004 May; 25(12):2247-63. PubMed ID: 14741590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoregulating Antifouling and Bioadhesion Functional Coating Surface Based on Spiropyran.
    Yu L; Schlaich C; Hou Y; Zhang J; Noeske PM; Haag R
    Chemistry; 2018 May; 24(30):7742-7748. PubMed ID: 29578259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein adsorption measurements on low fouling and ultralow fouling surfaces: A critical comparison of surface characterization techniques.
    Hedayati M; Marruecos DF; Krapf D; Kaar JL; Kipper MJ
    Acta Biomater; 2020 Jan; 102():169-180. PubMed ID: 31731023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multidisciplinary Experiment to Characterize Antifouling Biocompatible Interfaces via Quantification of Surface Protein Adsorption.
    Massoumi H; Chug MK; Nguyen GH; Brisbois EJ
    J Chem Educ; 2022 Jul; 99(7):2667-2676. PubMed ID: 37274940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and mechanisms of antifouling materials for surface plasmon resonance sensors.
    Liu B; Liu X; Shi S; Huang R; Su R; Qi W; He Z
    Acta Biomater; 2016 Aug; 40():100-118. PubMed ID: 26921775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular fouling resistance of zwitterionic and amphiphilic initiated chemically vapor-deposited (iCVD) thin films.
    Yang R; Goktekin E; Wang M; Gleason KK
    J Biomater Sci Polym Ed; 2014; 25(14-15):1687-702. PubMed ID: 25188220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings.
    Xing CM; Meng FN; Quan M; Ding K; Dang Y; Gong YK
    Acta Biomater; 2017 Sep; 59():129-138. PubMed ID: 28663144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.