These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3372723)

  • 21. Projections of the nucleus of the basal optic root in the pigeon: an autoradiographic and horseradish peroxidase study.
    Brecha N; Karten HJ; Hunt SP
    J Comp Neurol; 1980 Feb; 189(4):615-70. PubMed ID: 7381044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pattern of retinotectal projection in the megachiropteran bat Rousettus aegyptiacus.
    Thiele A; Vogelsang M; Hoffmann KP
    J Comp Neurol; 1991 Dec; 314(4):671-83. PubMed ID: 1816270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells.
    Moore RY; Speh JC; Card JP
    J Comp Neurol; 1995 Feb; 352(3):351-66. PubMed ID: 7706557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for centripetally shifting terminals on the tectum of postmetamorphic Rana pipiens.
    Hitchcock PF; Easter SS
    J Comp Neurol; 1987 Dec; 266(4):556-64. PubMed ID: 3501793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Afferent and efferent connections of the nucleus geniculatus lateralis ventralis demonstrated by WGA-HRP in the chick.
    Hu M; Naito J; Chen Y; Ohmori Y; Fukuta K
    Anat Histol Embryol; 2004 Aug; 33(4):192-5. PubMed ID: 15239808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Central projections of cat retinal ganglion cells.
    Leventhal AG; Rodieck RW; Dreher B
    J Comp Neurol; 1985 Jul; 237(2):216-26. PubMed ID: 4031122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The neural substrate for the pupillary light reflex in the pigeon (Columba livia).
    Gamlin PD; Reiner A; Erichsen JT; Karten HJ; Cohen DH
    J Comp Neurol; 1984 Jul; 226(4):523-43. PubMed ID: 6747033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compression and expansion without impulse activity in the retinotectal projection of goldfish.
    Meyer RL; Wolcott LL
    J Neurobiol; 1987 Nov; 18(6):549-67. PubMed ID: 3694194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regional specialization in retinal ganglion cell projection to optic tectum of Dipsosaurus dorsalis (Iguanidae).
    Peterson EH
    J Comp Neurol; 1981 Feb; 196(2):225-52. PubMed ID: 7217356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens.
    Reh TA; Pitts E; Constantine-Paton M
    J Comp Neurol; 1983 Aug; 218(3):282-96. PubMed ID: 6604077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The pretectal nucleus lentiformis mesencephali of Rana pipiens.
    Montgomery NM; Fite KV; Grigonis AM
    J Comp Neurol; 1985 Apr; 234(2):264-75. PubMed ID: 3872890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of permeability of midtectal barriers in goldfish on compression of the visuotectal projection rostrally and regenerative escape caudally.
    Edwards MA; Jacobson M
    J Comp Neurol; 1984 Jun; 226(1):141-53. PubMed ID: 6736293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Topography of regenerating optic fibers in goldfish traced with local wheat germ injections into retina: evidence for discontinuous microtopography in the retinotectal projection.
    Meyer RL; Sakurai K; Schauwecker E
    J Comp Neurol; 1985 Sep; 239(1):27-43. PubMed ID: 4044930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcellular retrograde labeling of radial glial cells with WGA-HRP and DiI in neonatal rat and hamster.
    Kageyama GH; Robertson RT
    Glia; 1993 Sep; 9(1):70-81. PubMed ID: 7503953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ganglion cells of the cat accessory optic system: morphology and retinal topography.
    Farmer SG; Rodieck RW
    J Comp Neurol; 1982 Feb; 205(2):190-8. PubMed ID: 7076892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Normal activity-dependent refinement in a compressed retinotectal projection in goldfish.
    Olson MD; Meyer RL
    J Comp Neurol; 1994 Sep; 347(4):481-94. PubMed ID: 7529264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pretectal and brain stem projections of the medial terminal nucleus of the accessory optic system of the rabbit and rat as studied by anterograde and retrograde neuronal tracing methods.
    Giolli RA; Blanks RH; Torigoe Y
    J Comp Neurol; 1984 Aug; 227(2):228-51. PubMed ID: 6470215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum). I. Retinal projections.
    Luiten PG
    J Comp Neurol; 1981 Mar; 196(4):531-8. PubMed ID: 7204669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Retinotopic organization in the development of the young trout Salmo gairdneri Rich].
    Pinganaud G
    J Hirnforsch; 1987; 28(1):71-89. PubMed ID: 3598177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Positional determination of the naso-temporal retinal axis coincides with asymmetric expression of proteins along the anterior-posterior axis of the eye primordium.
    Thanos S; Mey J; Dütting D; Hummler E
    Exp Eye Res; 1996 Nov; 63(5):479-92. PubMed ID: 8994351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.