BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 33727355)

  • 41. Using fimbrin to quantify the endocytic subapical collar during polarized growth in three filamentous fungi.
    Vasselli JG; Kainer E; Shaw BD
    Mycologia; 2023; 115(4):456-469. PubMed ID: 37196171
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The essential phosphoinositide kinase MSS-4 is required for polar hyphal morphogenesis, localizing to sites of growth and cell fusion in Neurospora crassa.
    Mähs A; Ischebeck T; Heilig Y; Stenzel I; Hempel F; Seiler S; Heilmann I
    PLoS One; 2012; 7(12):e51454. PubMed ID: 23272106
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The roles of Ca2+ and plasma membrane ion channels in hyphal tip growth of Neurospora crassa.
    Levina NN; Lew RR; Hyde GJ; Heath IB
    J Cell Sci; 1995 Nov; 108 ( Pt 11)():3405-17. PubMed ID: 8586653
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potassium gradients in the growing hyphae of Neurospora crassa.
    Aslanidi KB; Pogorelov AG; Aslanidi V; Mornev A; Sahakyan GG
    Membr Cell Biol; 2001; 14(4):487-95. PubMed ID: 11497103
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Traffic of chitin synthase 1 (CHS-1) to the Spitzenkörper and developing septa in hyphae of Neurospora crassa: actin dependence and evidence of distinct microvesicle populations.
    Sánchez-León E; Verdín J; Freitag M; Roberson RW; Bartnicki-Garcia S; Riquelme M
    Eukaryot Cell; 2011 May; 10(5):683-95. PubMed ID: 21296914
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spitzenkorper, exocyst, and polarisome components in Candida albicans hyphae show different patterns of localization and have distinct dynamic properties.
    Jones LA; Sudbery PE
    Eukaryot Cell; 2010 Oct; 9(10):1455-65. PubMed ID: 20693302
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The polarisome component SPA-2 localizes at the apex of Neurospora crassa and partially colocalizes with the Spitzenkörper.
    Araujo-Palomares CL; Riquelme M; Castro-Longoria E
    Fungal Genet Biol; 2009 Aug; 46(8):551-63. PubMed ID: 19281855
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evolution of multinucleated Ashbya gossypii hyphae from a budding yeast-like ancestor.
    Schmitz HP; Philippsen P
    Fungal Biol; 2011 Jun; 115(6):557-68. PubMed ID: 21640319
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tansley Review No. 45 Wall growth, protein excretion and morphogenesis in fungi.
    Wessels JGH
    New Phytol; 1993 Mar; 123(3):397-413. PubMed ID: 33874109
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Subcellular structure and behaviour in fungal hyphae.
    Roberson RW
    J Microsc; 2020 Nov; 280(2):75-85. PubMed ID: 32700404
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynein and dynactin deficiencies affect the formation and function of the Spitzenkörper and distort hyphal morphogenesis of Neurospora crassa.
    Riquelme M; Gierz G; Bartnicki-Garcı A S
    Microbiology (Reading); 2000 Jul; 146 ( Pt 7)():1743-1752. PubMed ID: 10878138
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of actin, fimbrin and endocytosis in growth of hyphae in Aspergillus nidulans.
    Upadhyay S; Shaw BD
    Mol Microbiol; 2008 May; 68(3):690-705. PubMed ID: 18331474
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Model of hyphal tip growth involving microtubule-based transport.
    Sugden KE; Evans MR; Poon WC; Read ND
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031909. PubMed ID: 17500728
    [TBL] [Abstract][Full Text] [Related]  

  • 54. F-actin dynamics following mechanical injury of Trichoderma atroviride and Neurospora crassa hyphae.
    Garduño-Rosales M; Callejas-Negrete OA; Medina-Castellanos E; Bartnicki-García S; Herrera-Estrella A; Mouriño-Pérez RR
    Fungal Genet Biol; 2022 Apr; 159():103672. PubMed ID: 35150841
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasma membrane-adjacent actin filaments, but not microtubules, are essential for both polarization and hyphal tip morphogenesis in Saprolegnia ferax and Neurospora crassa.
    Heath IB; Gupta G; Bai S
    Fungal Genet Biol; 2000 Jun; 30(1):45-62. PubMed ID: 10955907
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Organization of mitochondria in the growing hyphae of Neurospora crassa].
    Potapova TV; Boĭtsova LIu; Golyshev SA; Popinako AV
    Tsitologiia; 2013; 55(11):828-36. PubMed ID: 25509139
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Axl2 integrates polarity establishment, maintenance, and environmental stress response in the filamentous fungus Ashbya gossypii.
    Anker JF; Gladfelter AS
    Eukaryot Cell; 2011 Dec; 10(12):1679-93. PubMed ID: 21984708
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification and functional analysis of endogenous nitric oxide in a filamentous fungus.
    Pengkit A; Jeon SS; Son SJ; Shin JH; Baik KY; Choi EH; Park G
    Sci Rep; 2016 Jul; 6():30037. PubMed ID: 27425220
    [TBL] [Abstract][Full Text] [Related]  

  • 59. F-actin dynamics in Neurospora crassa.
    Berepiki A; Lichius A; Shoji JY; Tilsner J; Read ND
    Eukaryot Cell; 2010 Apr; 9(4):547-57. PubMed ID: 20139238
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lack of the GTPase RHO-4 in Neurospora crassa causes a reduction in numbers and aberrant stabilization of microtubules at hyphal tips.
    Rasmussen CG; Morgenstein RM; Peck S; Glass NL
    Fungal Genet Biol; 2008 Jun; 45(6):1027-39. PubMed ID: 18387834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.