These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 33727391)
1. Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in Pseudomonas putida Reveals a General Principle Underlying Glycolytic Strategies in Bacteria. Volke DC; Olavarría K; Nikel PI mSystems; 2021 Mar; 6(2):. PubMed ID: 33727391 [TBL] [Abstract][Full Text] [Related]
2. Glucose-6-Phosphate Dehydrogenase, ZwfA, a Dual Cofactor-Specific Isozyme Is Predominantly Involved in the Glucose Metabolism of Pseudomonas bharatica CSV86 Shah BA; Kasarlawar ST; Phale PS Microbiol Spectr; 2022 Dec; 10(6):e0381822. PubMed ID: 36354357 [TBL] [Abstract][Full Text] [Related]
3. Quantifying NAD(P)H production in the upper Entner-Doudoroff pathway from Pseudomonas putida KT2440. Olavarria K; Marone MP; da Costa Oliveira H; Roncallo JC; da Costa Vasconcelos FN; da Silva LF; Gomez JG FEBS Open Bio; 2015; 5():908-15. PubMed ID: 26702395 [TBL] [Abstract][Full Text] [Related]
4. Pseudomonas putida KT2440 Strain Metabolizes Glucose through a Cycle Formed by Enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and Pentose Phosphate Pathways. Nikel PI; Chavarría M; Fuhrer T; Sauer U; de Lorenzo V J Biol Chem; 2015 Oct; 290(43):25920-32. PubMed ID: 26350459 [TBL] [Abstract][Full Text] [Related]
5. Analogous Metabolic Decoupling in Pseudomonas putida and Comamonas testosteroni Implies Energetic Bypass to Facilitate Gluconeogenic Growth. Wilkes RA; Waldbauer J; Aristilde L mBio; 2021 Dec; 12(6):e0325921. PubMed ID: 34903058 [TBL] [Abstract][Full Text] [Related]
6. Metabolic impact of an NADH-producing glucose-6-phosphate dehydrogenase in Escherichia coli. Olavarria K; De Ingeniis J; Zielinski DC; Fuentealba M; Muñoz R; McCloskey D; Feist AM; Cabrera R Microbiology (Reading); 2014 Dec; 160(Pt 12):2780-2793. PubMed ID: 25246670 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin. Simon O; Klaiber I; Huber A; Pfannstiel J J Proteomics; 2014 Sep; 109():212-27. PubMed ID: 25026441 [TBL] [Abstract][Full Text] [Related]
8. Regulation of Pyrroloquinoline Quinone-Dependent Glucose Dehydrogenase Activity in the Model Rhizosphere-Dwelling Bacterium Pseudomonas putida KT2440. An R; Moe LA Appl Environ Microbiol; 2016 Aug; 82(16):4955-64. PubMed ID: 27287323 [TBL] [Abstract][Full Text] [Related]
9. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies. Fuentealba M; Muñoz R; Maturana P; Krapp A; Cabrera R PLoS One; 2016; 11(3):e0152403. PubMed ID: 27010804 [TBL] [Abstract][Full Text] [Related]
10. Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism. Chavarría M; Kleijn RJ; Sauer U; Pflüger-Grau K; de Lorenzo V mBio; 2012; 3(2):. PubMed ID: 22434849 [TBL] [Abstract][Full Text] [Related]
11. Coexistence of the Entner-Doudoroff and Embden-Meyerhof-Parnas pathways enhances glucose consumption of ethanol-producing Corynebacterium glutamicum. Jojima T; Igari T; Noburyu R; Watanabe A; Suda M; Inui M Biotechnol Biofuels; 2021 Feb; 14(1):45. PubMed ID: 33593398 [TBL] [Abstract][Full Text] [Related]
12. Functional Role of Lanthanides in Enzymatic Activity and Transcriptional Regulation of Pyrroloquinoline Quinone-Dependent Alcohol Dehydrogenases in Wehrmann M; Billard P; Martin-Meriadec A; Zegeye A; Klebensberger J mBio; 2017 Jun; 8(3):. PubMed ID: 28655819 [TBL] [Abstract][Full Text] [Related]
13. The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Chavarría M; Nikel PI; Pérez-Pantoja D; de Lorenzo V Environ Microbiol; 2013 Jun; 15(6):1772-85. PubMed ID: 23301697 [TBL] [Abstract][Full Text] [Related]
14. Fructose metabolism in Chromohalobacter salexigens: interplay between the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways. Pastor JM; Borges N; Pagán JP; Castaño-Cerezo S; Csonka LN; Goodner BW; Reynolds KA; Gonçalves LG; Argandoña M; Nieto JJ; Vargas C; Bernal V; Cánovas M Microb Cell Fact; 2019 Aug; 18(1):134. PubMed ID: 31409414 [TBL] [Abstract][Full Text] [Related]
15. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli--modeling the physiological production of reduced cofactors. Olavarría K; Valdés D; Cabrera R FEBS J; 2012 Jul; 279(13):2296-309. PubMed ID: 22519976 [TBL] [Abstract][Full Text] [Related]
16. Functional implementation of a linear glycolysis for sugar catabolism in Pseudomonas putida. Sánchez-Pascuala A; Fernández-Cabezón L; de Lorenzo V; Nikel PI Metab Eng; 2019 Jul; 54():200-211. PubMed ID: 31009747 [TBL] [Abstract][Full Text] [Related]
17. Change in Cofactor Specificity of Oxidoreductases by Adaptive Evolution of an Escherichia coli NADPH-Auxotrophic Strain. Bouzon M; Döring V; Dubois I; Berger A; Stoffel GMM; Calzadiaz Ramirez L; Meyer SN; Fouré M; Roche D; Perret A; Erb TJ; Bar-Even A; Lindner SN mBio; 2021 Aug; 12(4):e0032921. PubMed ID: 34399608 [TBL] [Abstract][Full Text] [Related]
18. The functional structure of central carbon metabolism in Pseudomonas putida KT2440. Sudarsan S; Dethlefsen S; Blank LM; Siemann-Herzberg M; Schmid A Appl Environ Microbiol; 2014 Sep; 80(17):5292-303. PubMed ID: 24951791 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440. Xu Z; Pan C; Li X; Hao N; Zhang T; Gaffrey MJ; Pu Y; Cort JR; Ragauskas AJ; Qian WJ; Yang B Biotechnol Biofuels; 2021 Jan; 14(1):11. PubMed ID: 33413621 [TBL] [Abstract][Full Text] [Related]
20. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Beckers V; Poblete-Castro I; Tomasch J; Wittmann C Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]