These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 33727422)
1. Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism. Bandara S; Rockwell NC; Zeng X; Ren Z; Wang C; Shin H; Martin SS; Moreno MV; Lagarias JC; Yang X Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33727422 [TBL] [Abstract][Full Text] [Related]
2. Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE. Nagae T; Unno M; Koizumi T; Miyanoiri Y; Fujisawa T; Masui K; Kamo T; Wada K; Eki T; Ito Y; Hirose Y; Mishima M Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972439 [TBL] [Abstract][Full Text] [Related]
3. A far-red cyanobacteriochrome lineage specific for verdins. Moreno MV; Rockwell NC; Mora M; Fisher AJ; Lagarias JC Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27962-27970. PubMed ID: 33106421 [TBL] [Abstract][Full Text] [Related]
4. Green/red light-sensing mechanism in the chromatic acclimation photosensor. Nagae T; Fujita Y; Tsuchida T; Kamo T; Seto R; Hamada M; Aoyama H; Sato-Tomita A; Fujisawa T; Eki T; Miyanoiri Y; Ito Y; Soeta T; Ukaji Y; Unno M; Mishima M; Hirose Y Sci Adv; 2024 Jun; 10(24):eadn8386. PubMed ID: 38865454 [TBL] [Abstract][Full Text] [Related]
5. Teal-light absorbing cyanobacterial phytochrome superfamily provides insights into the diverse mechanisms of spectral tuning and facilitates the engineering of photoreceptors for optogenetic tools. Yang HW; Kim YW; Villafani Y; Song JY; Park YI Int J Biol Macromol; 2024 Aug; 274(Pt 2):133407. PubMed ID: 38925190 [TBL] [Abstract][Full Text] [Related]
6. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Rockwell NC; Martin SS; Feoktistova K; Lagarias JC Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11854-9. PubMed ID: 21712441 [TBL] [Abstract][Full Text] [Related]
7. Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Hirose Y; Rockwell NC; Nishiyama K; Narikawa R; Ukaji Y; Inomata K; Lagarias JC; Ikeuchi M Proc Natl Acad Sci U S A; 2013 Mar; 110(13):4974-9. PubMed ID: 23479641 [TBL] [Abstract][Full Text] [Related]
8. The interplay between chromophore and protein determines the extended excited state dynamics in a single-domain phytochrome. Slavov C; Fischer T; Barnoy A; Shin H; Rao AG; Wiebeler C; Zeng X; Sun Y; Xu Q; Gutt A; Zhao KH; Gärtner W; Yang X; Schapiro I; Wachtveitl J Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16356-16362. PubMed ID: 32591422 [TBL] [Abstract][Full Text] [Related]
9. Protochromic absorption changes in the two-cysteine photocycle of a blue/orange cyanobacteriochrome. Sato T; Kikukawa T; Miyoshi R; Kajimoto K; Yonekawa C; Fujisawa T; Unno M; Eki T; Hirose Y J Biol Chem; 2019 Dec; 294(49):18909-18922. PubMed ID: 31649035 [TBL] [Abstract][Full Text] [Related]
10. Ultrafast Primary Dynamics and Isomerization Mechanism of a Far-Red Sensing Cyanobacteriochrome. Niu K; Wang D; Zhang Y; Biju L; Liu N; Wang X; Wang L; Ren Z; Lu F; Yang X; Zhong D J Phys Chem Lett; 2024 May; 15(19):5202-5207. PubMed ID: 38717357 [TBL] [Abstract][Full Text] [Related]
11. Raman Spectroscopy of an Atypical C15- Okuda Y; Miyoshi R; Kamo T; Fujisawa T; Nagae T; Mishima M; Eki T; Hirose Y; Unno M J Phys Chem B; 2022 Feb; 126(4):813-821. PubMed ID: 35076228 [TBL] [Abstract][Full Text] [Related]
12. Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Rockwell NC; Martin SS; Gulevich AG; Lagarias JC Biochemistry; 2012 Feb; 51(7):1449-63. PubMed ID: 22279972 [TBL] [Abstract][Full Text] [Related]
13. Probing bilin-protein interaction in the protochromic photocycle of cyanobacteriochrome RcaE by site-directed mutagenesis. Kamo T; Matsushita T; Hamada M; Fujisawa T; Eki T; Unno M; Hirose Y Plant Cell Physiol; 2024 Aug; ():. PubMed ID: 39092561 [TBL] [Abstract][Full Text] [Related]
15. Primary photodynamics of the green/red-absorbing photoswitching regulator of the chromatic adaptation E domain from Fremyella diplosiphon. Gottlieb SM; Kim PW; Rockwell NC; Hirose Y; Ikeuchi M; Lagarias JC; Larsen DS Biochemistry; 2013 Nov; 52(46):8198-208. PubMed ID: 24147541 [TBL] [Abstract][Full Text] [Related]
16. Conservation and diversity in the primary forward photodynamics of red/green cyanobacteriochromes. Gottlieb SM; Kim PW; Chang CW; Hanke SJ; Hayer RJ; Rockwell NC; Martin SS; Lagarias JC; Larsen DS Biochemistry; 2015 Feb; 54(4):1028-42. PubMed ID: 25545467 [TBL] [Abstract][Full Text] [Related]
17. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Fushimi K; Rockwell NC; Enomoto G; Ni-Ni-Win ; Martin SS; Gan F; Bryant DA; Ikeuchi M; Lagarias JC; Narikawa R Biochemistry; 2016 Dec; 55(50):6981-6995. PubMed ID: 27935696 [TBL] [Abstract][Full Text] [Related]
18. Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore. Fushimi K; Narikawa R Adv Exp Med Biol; 2021; 1293():167-187. PubMed ID: 33398813 [TBL] [Abstract][Full Text] [Related]
19. Protein Engineering of Dual-Cys Cyanobacteriochrome AM1_1186g2 for Biliverdin Incorporation and Far-Red/Blue Reversible Photoconversion. Kuwasaki Y; Miyake K; Fushimi K; Takeda Y; Ueda Y; Nakajima T; Ikeuchi M; Sato M; Narikawa R Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31208089 [TBL] [Abstract][Full Text] [Related]
20. Color Sensing and Signal Transmission Diversity of Cyanobacterial Phytochromes and Cyanobacteriochromes. Villafani Y; Yang HW; Park YI Mol Cells; 2020 Jun; 43(6):509-516. PubMed ID: 32438780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]