These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33727557)

  • 1. dCas9 regulator to neutralize competition in CRISPRi circuits.
    Huang HH; Bellato M; Qian Y; Cárdenas P; Pasotti L; Magni P; Del Vecchio D
    Nat Commun; 2021 Mar; 12(1):1692. PubMed ID: 33727557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Levels of sgRNA as a Major Factor Affecting CRISPRi Knockdown Efficiency in K562 Cells].
    Wang Y; Xie Y; Dong ZC; Jiang XJ; Gong P; Lu J; Wan F
    Mol Biol (Mosk); 2021; 55(1):86-95. PubMed ID: 33566028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulated Expression of sgRNAs Tunes CRISPRi in E. coli.
    Fontana J; Dong C; Ham JY; Zalatan JG; Carothers JM
    Biotechnol J; 2018 Sep; 13(9):e1800069. PubMed ID: 29635744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression.
    Radzisheuskaya A; Shlyueva D; Müller I; Helin K
    Nucleic Acids Res; 2016 Oct; 44(18):e141. PubMed ID: 27353328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward tunable dynamic repression using CRISPRi.
    Jang S; Jang S; Jung GY
    Biotechnol J; 2018 Sep; 13(9):e1800152. PubMed ID: 29714047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation of dCas9-mediated CRISPRi in the fission yeast Schizosaccharomyces pombe.
    Ishikawa K; Soejima S; Masuda F; Saitoh S
    G3 (Bethesda); 2021 Apr; 11(4):. PubMed ID: 33617628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design.
    Zhang S; Voigt CA
    Nucleic Acids Res; 2018 Nov; 46(20):11115-11125. PubMed ID: 30289463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels.
    Depardieu F; Bikard D
    Methods; 2020 Feb; 172():61-75. PubMed ID: 31377338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Mediated Transcriptional Repression in Toxoplasma gondii.
    Markus BM; Boydston EA; Lourido S
    mSphere; 2021 Oct; 6(5):e0047421. PubMed ID: 34643425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis.
    Mo XH; Zhang H; Wang TM; Zhang C; Zhang C; Xing XH; Yang S
    Appl Microbiol Biotechnol; 2020 May; 104(10):4515-4532. PubMed ID: 32215707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR Interference Modules as Low-Burden Logic Inverters in Synthetic Circuits.
    Bellato M; Frusteri Chiacchiera A; Salibi E; Casanova M; De Marchi D; Castagliuolo I; Cusella De Angelis MG; Magni P; Pasotti L
    Front Bioeng Biotechnol; 2021; 9():743950. PubMed ID: 35155399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming Leak Sensitivity in CRISPRi Circuits Using Antisense RNA Sequestration and Regulatory Feedback.
    Specht DA; Cortes LB; Lambert G
    ACS Synth Biol; 2022 Sep; 11(9):2927-2937. PubMed ID: 36017994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects.
    Rahman MM; Tollefsbol TO
    Methods; 2021 Mar; 187():77-91. PubMed ID: 32315755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional Knockdown in Pneumococci Using CRISPR Interference.
    Kjos M
    Methods Mol Biol; 2019; 1968():89-98. PubMed ID: 30929208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted Transcriptional Activation in Plants Using a Potent Dead Cas9-Derived Synthetic Gene Activator.
    Li Z; Wang F; Li JF
    Curr Protoc Mol Biol; 2019 Jun; 127(1):e89. PubMed ID: 31237422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors.
    Replogle JM; Bonnar JL; Pogson AN; Liem CR; Maier NK; Ding Y; Russell BJ; Wang X; Leng K; Guna A; Norman TM; Pak RA; Ramos DM; Ward ME; Gilbert LA; Kampmann M; Weissman JS; Jost M
    Elife; 2022 Dec; 11():. PubMed ID: 36576240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/dCas9-Mediated Multiplex Gene Repression in Streptomyces.
    Zhao Y; Li L; Zheng G; Jiang W; Deng Z; Wang Z; Lu Y
    Biotechnol J; 2018 Sep; 13(9):e1800121. PubMed ID: 29862648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. sgRNA Sequence Motifs Blocking Efficient CRISPR/Cas9-Mediated Gene Editing.
    Graf R; Li X; Chu VT; Rajewsky K
    Cell Rep; 2019 Jan; 26(5):1098-1103.e3. PubMed ID: 30699341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CRISPR Interference Platform for Efficient Genetic Repression in
    Wensing L; Sharma J; Uthayakumar D; Proteau Y; Chavez A; Shapiro RS
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of a Synthetic Amino Acid into dCas9 Improves Control of Gene Silencing.
    Koopal B; Kruis AJ; Claassens NJ; Nobrega FL; van der Oost J
    ACS Synth Biol; 2019 Feb; 8(2):216-222. PubMed ID: 30668910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.