These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33727572)

  • 21. Invariance of experimental observables with respect to coarse-graining in standard and many-body dissipative particle dynamics.
    Vanya P; Sharman J; Elliott JA
    J Chem Phys; 2019 Feb; 150(6):064101. PubMed ID: 30770006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A test of systematic coarse-graining of molecular dynamics simulations: thermodynamic properties.
    Fu CC; Kulkarni PM; Shell MS; Leal LG
    J Chem Phys; 2012 Oct; 137(16):164106. PubMed ID: 23126694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A general method for spatially coarse-graining Metropolis Monte Carlo simulations onto a lattice.
    Liu X; Seider WD; Sinno T
    J Chem Phys; 2013 Mar; 138(11):114104. PubMed ID: 23534624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined length scales in dissipative particle dynamics.
    Backer JA; Lowe CP; Hoefsloot HC; Iedema PD
    J Chem Phys; 2005 Sep; 123(11):114905. PubMed ID: 16392595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Entanglement Renormalization of Thermofield Double States.
    Lin CJ; Li Z; Hsieh TH
    Phys Rev Lett; 2021 Aug; 127(8):080602. PubMed ID: 34477410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bringing Molecular Dynamics and Ion-Mobility Spectrometry Closer Together: Shape Correlations, Structure-Based Predictors, and Dissociation.
    Kulesza A; Marklund EG; MacAleese L; Chirot F; Dugourd P
    J Phys Chem B; 2018 Sep; 122(35):8317-8329. PubMed ID: 30068075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new perspective on the coarse-grained dynamics of fluids.
    Ayton GS; Tepper HL; Mirijanian DT; Voth GA
    J Chem Phys; 2004 Mar; 120(9):4074-88. PubMed ID: 15268574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superfluid phase transition with activated velocity fluctuations: Renormalization group approach.
    Dančo M; Hnatič M; Komarova MV; Lučivjanský T; Nalimov MY
    Phys Rev E; 2016 Jan; 93(1):012109. PubMed ID: 26871026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review.
    Wu XG; Ma Y; Wang SQ; Fu HB; Ma HH; Brodsky SJ; Mojaza M
    Rep Prog Phys; 2015 Dec; 78(12):126201. PubMed ID: 26510392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Renormalizing SMD: the renormalization approach and its use in long time simulations and accelerated PMF calculations of macromolecules.
    Dryga A; Warshel A
    J Phys Chem B; 2010 Oct; 114(39):12720-8. PubMed ID: 20836533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrafast dynamics of strongly correlated fermions-nonequilibrium Green functions and selfenergy approximations.
    Schlünzen N; Hermanns S; Scharnke M; Bonitz M
    J Phys Condens Matter; 2020 Mar; 32(10):103001. PubMed ID: 31247604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dimensional reduction breakdown and correction to scaling in the random-field Ising model.
    Balog I; Tarjus G; Tissier M
    Phys Rev E; 2020 Dec; 102(6-1):062154. PubMed ID: 33466013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy-Renormalization for Achieving Temperature Transferable Coarse-Graining of Polymer Dynamics.
    Xia W; Song J; Jeong C; Hsu DD; Phelan FR; Douglas JF; Keten S
    Macromolecules; 2017; 50():. PubMed ID: 30996475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesoscale model of polymer melt structure: self-consistent mapping of molecular correlations to coarse-grained potentials.
    Ashbaugh HS; Patel HA; Kumar SK; Garde S
    J Chem Phys; 2005 Mar; 122(10):104908. PubMed ID: 15836359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissipative particle dynamics with an effective pair potential from integral equation theory of molecular liquids.
    Kobryn AE; Nikolić D; Lyubimova O; Gusarov S; Kovalenko A
    J Phys Chem B; 2014 Oct; 118(41):12034-49. PubMed ID: 25162701
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrostatics in dissipative particle dynamics using Ewald sums with point charges.
    Terrón-Mejía KA; López-Rendón R; Goicochea AG
    J Phys Condens Matter; 2016 Oct; 28(42):425101. PubMed ID: 27541198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bottom-up derivation of conservative and dissipative interactions for coarse-grained molecular liquids with the conditional reversible work method.
    Deichmann G; Marcon V; van der Vegt NF
    J Chem Phys; 2014 Dec; 141(22):224109. PubMed ID: 25494734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins.
    Ramakrishnan N; Sunil Kumar PB; Radhakrishnan R
    Phys Rep; 2014 Oct; 543(1):1-60. PubMed ID: 25484487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite-size scaling study of dynamic critical phenomena in a vapor-liquid transition.
    Midya J; Das SK
    J Chem Phys; 2017 Jan; 146(4):044503. PubMed ID: 28147549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bottom-up construction of interaction models of non-Markovian dissipative particle dynamics.
    Yoshimoto Y; Kinefuchi I; Mima T; Fukushima A; Tokumasu T; Takagi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043305. PubMed ID: 24229302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.