These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 33727595)
1. Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity. Khan NMU; Arai T; Tsuda S; Kondo H Sci Rep; 2021 Mar; 11(1):5971. PubMed ID: 33727595 [TBL] [Abstract][Full Text] [Related]
2. Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus. Cheng J; Hanada Y; Miura A; Tsuda S; Kondo H Biochem J; 2016 Nov; 473(21):4011-4026. PubMed ID: 27613857 [TBL] [Abstract][Full Text] [Related]
3. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370 [TBL] [Abstract][Full Text] [Related]
4. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity. Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764 [TBL] [Abstract][Full Text] [Related]
5. Computational Study of Differences between Antifreeze Activity of Type-III Antifreeze Protein from Ocean Pout and Its Mutant. Kumari S; Muthachikavil AV; Tiwari JK; Punnathanam SN Langmuir; 2020 Mar; 36(9):2439-2448. PubMed ID: 32069407 [TBL] [Abstract][Full Text] [Related]
6. Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. Kondo H; Hanada Y; Sugimoto H; Hoshino T; Garnham CP; Davies PL; Tsuda S Proc Natl Acad Sci U S A; 2012 Jun; 109(24):9360-5. PubMed ID: 22645341 [TBL] [Abstract][Full Text] [Related]
7. High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins. Biswas AD; Barone V; Daidone I J Phys Chem Lett; 2021 Sep; 12(36):8777-8783. PubMed ID: 34491750 [TBL] [Abstract][Full Text] [Related]
8. Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. Xiao N; Suzuki K; Nishimiya Y; Kondo H; Miura A; Tsuda S; Hoshino T FEBS J; 2010 Jan; 277(2):394-403. PubMed ID: 20030710 [TBL] [Abstract][Full Text] [Related]
9. Structure and application of antifreeze proteins from Antarctic bacteria. Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139 [TBL] [Abstract][Full Text] [Related]
10. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations. Sun T; Gauthier SY; Campbell RL; Davies PL J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748 [TBL] [Abstract][Full Text] [Related]
11. Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study. Midya US; Bandyopadhyay S J Phys Chem B; 2018 Oct; 122(40):9389-9398. PubMed ID: 30222341 [TBL] [Abstract][Full Text] [Related]
12. Solution structures, dynamics, and ice growth inhibitory activity of peptide fragments derived from an antarctic yeast protein. Shah SH; Kar RK; Asmawi AA; Rahman MB; Murad AM; Mahadi NM; Basri M; Rahman RN; Salleh AB; Chatterjee S; Tejo BA; Bhunia A PLoS One; 2012; 7(11):e49788. PubMed ID: 23209600 [TBL] [Abstract][Full Text] [Related]
13. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight. Chakraborty S; Jana B Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813 [TBL] [Abstract][Full Text] [Related]
14. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740 [TBL] [Abstract][Full Text] [Related]
15. When are antifreeze proteins in solution essential for ice growth inhibition? Drori R; Davies PL; Braslavsky I Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514 [TBL] [Abstract][Full Text] [Related]
17. Optimum Number of Anchored Clathrate Water and Its Instantaneous Fluctuations Dictate Ice Plane Recognition Specificities of Insect Antifreeze Protein. Chakraborty S; Jana B J Phys Chem B; 2018 Mar; 122(12):3056-3067. PubMed ID: 29510055 [TBL] [Abstract][Full Text] [Related]
18. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation. Pal P; Aich R; Chakraborty S; Jana B Langmuir; 2022 Dec; 38(49):15132-15144. PubMed ID: 36450094 [TBL] [Abstract][Full Text] [Related]
19. Deciphering the Role of the Non-ice-binding Surface in the Antifreeze Activity of Hyperactive Antifreeze Proteins. Pal P; Chakraborty S; Jana B J Phys Chem B; 2020 Jun; 124(23):4686-4696. PubMed ID: 32425044 [TBL] [Abstract][Full Text] [Related]
20. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics. Drori R; Celik Y; Davies PL; Braslavsky I J R Soc Interface; 2014 Sep; 11(98):20140526. PubMed ID: 25008081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]