These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 33727623)
1. Deep learning classification of lung cancer histology using CT images. Chaunzwa TL; Hosny A; Xu Y; Shafer A; Diao N; Lanuti M; Christiani DC; Mak RH; Aerts HJWL Sci Rep; 2021 Mar; 11(1):5471. PubMed ID: 33727623 [TBL] [Abstract][Full Text] [Related]
2. Lung cancer histology classification from CT images based on radiomics and deep learning models. Marentakis P; Karaiskos P; Kouloulias V; Kelekis N; Argentos S; Oikonomopoulos N; Loukas C Med Biol Eng Comput; 2021 Jan; 59(1):215-226. PubMed ID: 33411267 [TBL] [Abstract][Full Text] [Related]
4. Radiomics feature analysis and model research for predicting histopathological subtypes of non-small cell lung cancer on CT images: A multi-dataset study. Song F; Song X; Feng Y; Fan G; Sun Y; Zhang P; Li J; Liu F; Zhang G Med Phys; 2023 Jul; 50(7):4351-4365. PubMed ID: 36682051 [TBL] [Abstract][Full Text] [Related]
5. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer. Gu Q; Feng Z; Liang Q; Li M; Deng J; Ma M; Wang W; Liu J; Liu P; Rong P Eur J Radiol; 2019 Sep; 118():32-37. PubMed ID: 31439255 [TBL] [Abstract][Full Text] [Related]
6. Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging. Xu Y; Hosny A; Zeleznik R; Parmar C; Coroller T; Franco I; Mak RH; Aerts HJWL Clin Cancer Res; 2019 Jun; 25(11):3266-3275. PubMed ID: 31010833 [TBL] [Abstract][Full Text] [Related]
7. On-cloud decision-support system for non-small cell lung cancer histology characterization from thorax computed tomography scans. Tomassini S; Falcionelli N; Bruschi G; Sbrollini A; Marini N; Sernani P; Morettini M; Müller H; Dragoni AF; Burattini L Comput Med Imaging Graph; 2023 Dec; 110():102310. PubMed ID: 37979340 [TBL] [Abstract][Full Text] [Related]
8. Histologic subtype classification of non-small cell lung cancer using PET/CT images. Han Y; Ma Y; Wu Z; Zhang F; Zheng D; Liu X; Tao L; Liang Z; Yang Z; Li X; Huang J; Guo X Eur J Nucl Med Mol Imaging; 2021 Feb; 48(2):350-360. PubMed ID: 32776232 [TBL] [Abstract][Full Text] [Related]
9. Classification of early stage non-small cell lung cancers on computed tomographic images into histological types using radiomic features: interobserver delineation variability analysis. Haga A; Takahashi W; Aoki S; Nawa K; Yamashita H; Abe O; Nakagawa K Radiol Phys Technol; 2018 Mar; 11(1):27-35. PubMed ID: 29209915 [TBL] [Abstract][Full Text] [Related]
10. A short-term follow-up CT based radiomics approach to predict response to immunotherapy in advanced non-small-cell lung cancer. Gong J; Bao X; Wang T; Liu J; Peng W; Shi J; Wu F; Gu Y Oncoimmunology; 2022; 11(1):2028962. PubMed ID: 35096486 [TBL] [Abstract][Full Text] [Related]
11. Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features. Hu X; Gong J; Zhou W; Li H; Wang S; Wei M; Peng W; Gu Y Phys Med Biol; 2021 Mar; 66(6):065015. PubMed ID: 33596552 [TBL] [Abstract][Full Text] [Related]
12. Combining computed tomography and biologically effective dose in radiomics and deep learning improves prediction of tumor response to robotic lung stereotactic body radiation therapy. Avanzo M; Gagliardi V; Stancanello J; Blanck O; Pirrone G; El Naqa I; Revelant A; Sartor G Med Phys; 2021 Oct; 48(10):6257-6269. PubMed ID: 34415574 [TBL] [Abstract][Full Text] [Related]
13. A novel machine learning model for efficacy prediction of immunotherapy-chemotherapy in NSCLC based on CT radiomics. Li C; Zhou Z; Hou L; Hu K; Wu Z; Xie Y; Ouyang J; Cai X Comput Biol Med; 2024 Aug; 178():108638. PubMed ID: 38897152 [TBL] [Abstract][Full Text] [Related]
14. Pre-treatment Ahn HK; Lee H; Kim SG; Hyun SH Clin Radiol; 2019 Jun; 74(6):467-473. PubMed ID: 30898382 [TBL] [Abstract][Full Text] [Related]
15. One-step algorithm for fast-track localization and multi-category classification of histological subtypes in lung cancer. Qi J; Deng Z; Sun G; Qian S; Liu L; Xu B Eur J Radiol; 2022 Sep; 154():110443. PubMed ID: 35901600 [TBL] [Abstract][Full Text] [Related]
16. Radiomics and deep learning methods for the prediction of 2-year overall survival in LUNG1 dataset. Braghetto A; Marturano F; Paiusco M; Baiesi M; Bettinelli A Sci Rep; 2022 Aug; 12(1):14132. PubMed ID: 35986072 [TBL] [Abstract][Full Text] [Related]
17. Deep learning combined with radiomics may optimize the prediction in differentiating high-grade lung adenocarcinomas in ground glass opacity lesions on CT scans. Wang X; Zhang L; Yang X; Tang L; Zhao J; Chen G; Li X; Yan S; Li S; Yang Y; Kang Y; Li Q; Wu N Eur J Radiol; 2020 Aug; 129():109150. PubMed ID: 32604042 [TBL] [Abstract][Full Text] [Related]
18. 3D convolutional neural network model from contrast-enhanced CT to predict spread through air spaces in non-small cell lung cancer. Tao J; Liang C; Yin K; Fang J; Chen B; Wang Z; Lan X; Zhang J Diagn Interv Imaging; 2022 Nov; 103(11):535-544. PubMed ID: 35773100 [TBL] [Abstract][Full Text] [Related]
19. A subregion-based positron emission tomography/computed tomography (PET/CT) radiomics model for the classification of non-small cell lung cancer histopathological subtypes. Shen H; Chen L; Liu K; Zhao K; Li J; Yu L; Ye H; Zhu W Quant Imaging Med Surg; 2021 Jul; 11(7):2918-2932. PubMed ID: 34249623 [TBL] [Abstract][Full Text] [Related]
20. A bilinear convolutional neural network for lung nodules classification on CT images. Mastouri R; Khlifa N; Neji H; Hantous-Zannad S Int J Comput Assist Radiol Surg; 2021 Jan; 16(1):91-101. PubMed ID: 33140257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]