These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33727649)

  • 1. Snow algae blooms are beneficial for microinvertebrates assemblages (Tardigrada and Rotifera) on seasonal snow patches in Japan.
    Ono M; Takeuchi N; Zawierucha K
    Sci Rep; 2021 Mar; 11(1):5973. PubMed ID: 33727649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Description of a new species of Tardigrada Hypsibius nivalis sp. nov. and new phylogenetic line in Hypsibiidae from snow ecosystem in Japan.
    Ono M; Takeuchi N; Zawierucha K
    Sci Rep; 2022 Sep; 12(1):14995. PubMed ID: 36056052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial Community Analysis of Colored Snow from an Alpine Snowfield in Northern Japan Reveals the Prevalence of
    Terashima M; Umezawa K; Mori S; Kojima H; Fukui M
    Front Microbiol; 2017; 8():1481. PubMed ID: 28824603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tardigrada and Rotifera from moss microhabitats on a disappearing Ugandan glacier, with the description of a new species of water bear.
    Zawierucha K; GĄsiorek P; Buda J; Uetake J; Janko K; Fontaneto D
    Zootaxa; 2018 Mar; 4392(2):311-328. PubMed ID: 29690407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population growth of two limno-terrestrial Antarctic microinvertebrates in different aqueous soil media.
    McCarthy JS; Brown KE; King CK; Nielsen UN; Plaisted K; Wallace SMN; Reichman SM
    Environ Sci Pollut Res Int; 2024 May; 31(22):33086-33097. PubMed ID: 38676867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Snow algae communities in Antarctica: metabolic and taxonomic composition.
    Davey MP; Norman L; Sterk P; Huete-Ortega M; Bunbury F; Loh BKW; Stockton S; Peck LS; Convey P; Newsham KK; Smith AG
    New Phytol; 2019 May; 222(3):1242-1255. PubMed ID: 30667072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated 'Omics', Targeted Metabolite and Single-cell Analyses of Arctic Snow Algae Functionality and Adaptability.
    Lutz S; Anesio AM; Field K; Benning LG
    Front Microbiol; 2015; 6():1323. PubMed ID: 26635781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioavailability of Mineral-Bound Iron to a Snow Algal-Bacterial Coculture and Implications for Albedo-Altering Snow Algal Blooms.
    Harrold ZR; Hausrath EM; Garcia AH; Murray AE; Tschauner O; Raymond JA; Huang S
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in Snow Algae Blooms in the Coast Range of British Columbia.
    Engstrom CB; Yakimovich KM; Quarmby LM
    Front Microbiol; 2020; 11():569. PubMed ID: 32351463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote Sensing Phenology of Antarctic Green and Red Snow Algae Using WorldView Satellites.
    Gray A; Krolikowski M; Fretwell P; Convey P; Peck LS; Mendelova M; Smith AG; Davey MP
    Front Plant Sci; 2021; 12():671981. PubMed ID: 34226827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and Temporal Variations in Pigment and Species Compositions of Snow Algae on Mt. Tateyama in Toyama Prefecture, Japan.
    Nakashima T; Uetake J; Segawa T; Procházková L; Tsushima A; Takeuchi N
    Front Plant Sci; 2021; 12():689119. PubMed ID: 34290725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation.
    Remias D; Karsten U; Lütz C; Leya T
    Protoplasma; 2010 Jul; 243(1-4):73-86. PubMed ID: 20229328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpine Snow Algae Microbiome Diversity in the Coast Range of British Columbia.
    Yakimovich KM; Engstrom CB; Quarmby LM
    Front Microbiol; 2020; 11():1721. PubMed ID: 33013720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel parasitic chytrids infecting snow algae in an alpine snow ecosystem in Japan.
    Nakanishi H; Seto K; Takeuchi N; Kagami M
    Front Microbiol; 2023; 14():1201230. PubMed ID: 37408638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing the effective xanthophyll cycle for blooming of Ochromonas smithii and O. itoi (Chrysophyceae) on the snow surface.
    Tanabe Y; Shitara T; Kashino Y; Hara Y; Kudoh S
    PLoS One; 2011 Feb; 6(2):e14690. PubMed ID: 21373183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Snow and Glacial Algae: A Review
    Hoham RW; Remias D
    J Phycol; 2020 Apr; 56(2):264-282. PubMed ID: 31825096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elemental and fatty acid composition of snow algae in Arctic habitats.
    Spijkerman E; Wacker A; Weithoff G; Leya T
    Front Microbiol; 2012; 3():380. PubMed ID: 23112797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Snow algae of the Sierra Nevada, Spain, and High Atlas mountains of Morocco.
    Duval B; Duval E; Hoham RW
    Int Microbiol; 1999 Mar; 2(1):39-42. PubMed ID: 10943390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional filtering and random processes affect the assembly of microbial communities of snow algae blooms at Maritime Antarctic.
    Soto DF; Franzetti A; Gómez I; Huovinen P
    Sci Total Environ; 2022 Jan; 805():150305. PubMed ID: 34818790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecophysiology of
    Procházková L; Remias D; Řezanka T; Nedbalová L
    Microorganisms; 2019 Oct; 7(10):. PubMed ID: 31658718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.