BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33728772)

  • 1. Ultrafast and Stable Proton Conduction in Polybenzimidazole Covalent Organic Frameworks via Confinement and Activation.
    Li J; Wang J; Wu Z; Tao S; Jiang D
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12918-12923. PubMed ID: 33728772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exceptional Anhydrous Proton Conduction in Covalent Organic Frameworks.
    Tao S; Jiang D
    J Am Chem Soc; 2024 Jun; ():. PubMed ID: 38907725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating Anhydrous Proton Transport in Covalent Organic Frameworks: Pore Chemistry and Its Impacts.
    Tao S; Jiang D
    Angew Chem Int Ed Engl; 2024 Jun; ():e202408296. PubMed ID: 38843109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton conduction in crystalline and porous covalent organic frameworks.
    Xu H; Tao S; Jiang D
    Nat Mater; 2016 Jul; 15(7):722-6. PubMed ID: 27043780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zwitterionic Covalent Organic Frameworks: Attractive Porous Host for Gas Separation and Anhydrous Proton Conduction.
    Fu Y; Wu Y; Chen S; Zhang W; Zhang Y; Yan T; Yang B; Ma H
    ACS Nano; 2021 Dec; 15(12):19743-19755. PubMed ID: 34846130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host-Guest Assembly of H-Bonding Networks in Covalent Organic Frameworks for Ultrafast and Anhydrous Proton Transfer.
    Wu X; Liu Z; Guo H; Hong YL; Xu B; Zhang K; Nishiyama Y; Jiang W; Horike S; Kitagawa S; Zhang G
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37172-37178. PubMed ID: 34323069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent Organic Frameworks: Pore Design and Interface Engineering.
    Li Z; He T; Gong Y; Jiang D
    Acc Chem Res; 2020 Aug; 53(8):1672-1685. PubMed ID: 32786335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfonated 2D Covalent Organic Frameworks for Efficient Proton Conduction.
    Yang Z; Chen P; Hao W; Xie Z; Feng Y; Xing G; Chen L
    Chemistry; 2021 Feb; 27(11):3817-3822. PubMed ID: 33137220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore Geometry and Surface Engineering of Covalent Organic Frameworks for Anhydrous Proton Conduction.
    Hao L; Jia S; Qiao X; Lin E; Yang Y; Chen Y; Cheng P; Zhang Z
    Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202217240. PubMed ID: 36478518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confining H
    Tao S; Zhai L; Dinga Wonanke AD; Addicoat MA; Jiang Q; Jiang D
    Nat Commun; 2020 Apr; 11(1):1981. PubMed ID: 32332734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen-Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Proton-Conducting Materials.
    Karmakar A; Illathvalappil R; Anothumakkool B; Sen A; Samanta P; Desai AV; Kurungot S; Ghosh SK
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10667-71. PubMed ID: 27464784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined Intrinsic and Extrinsic Proton Conduction in Robust Covalent Organic Frameworks for Hydrogen Fuel Cell Applications.
    Yang Y; He X; Zhang P; Andaloussi YH; Zhang H; Jiang Z; Chen Y; Ma S; Cheng P; Zhang Z
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3678-3684. PubMed ID: 31833630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Conductive Polybenzimidazole Membranes at Low Phosphoric Acid Uptake with Excellent Fuel Cell Performances by Constructing Long-Range Continuous Proton Transport Channels Using a Metal-Organic Framework (UIO-66).
    Chen J; Wang L; Wang L
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41350-41358. PubMed ID: 32804468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?
    Melchior JP; Majer G; Kreuer KD
    Phys Chem Chem Phys; 2016 Dec; 19(1):601-612. PubMed ID: 27918027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perfluoroalkyl-Functionalized Covalent Organic Frameworks with Superhydrophobicity for Anhydrous Proton Conduction.
    Wu X; Hong YL; Xu B; Nishiyama Y; Jiang W; Zhu J; Zhang G; Kitagawa S; Horike S
    J Am Chem Soc; 2020 Aug; 142(33):14357-14364. PubMed ID: 32787252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intrinsic Proton Conductivity.
    Peng Y; Xu G; Hu Z; Cheng Y; Chi C; Yuan D; Cheng H; Zhao D
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18505-12. PubMed ID: 27385672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ-Doped Superacid in the Covalent Triazine Framework Membrane for Anhydrous Proton Conduction in a Wide Temperature Range from Subzero to Elevated Temperature.
    Huang W; Li B; Wu Y; Zhang Y; Zhang W; Chen S; Fu Y; Yan T; Ma H
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13604-13612. PubMed ID: 33719388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Proton Conductivity of Imidazole-Doped Thiophene-Based Covalent Organic Frameworks via Subtle Hydrogen Bonding Modulation.
    Li S; Liu Y; Li L; Liu C; Li J; Ashraf S; Li P; Wang B
    ACS Appl Mater Interfaces; 2020 May; 12(20):22910-22916. PubMed ID: 32345007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the nanosecond proton dynamics in phosphoric acid-benzimidazole and phosphoric acid-water mixtures.
    Melchior JP; Frick B
    Phys Chem Chem Phys; 2017 Nov; 19(42):28540-28554. PubMed ID: 29063940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing Covalent Organic Frameworks with a Tailored Ionic Interface for Ion Transport across One-Dimensional Channels.
    Xu Q; Tao S; Jiang Q; Jiang D
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4557-4563. PubMed ID: 31943653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.