BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33728897)

  • 1. Photoelectrochemical Behavior and Computational Insights for Pristine and Doped NdFeO
    Quiñonero J; Pastor FJ; Orts JM; Gómez R
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14150-14159. PubMed ID: 33728897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal Doping to Enhance the Photoelectrochemical Behavior of LaFeO
    Díez-García MI; Gómez R
    ChemSusChem; 2017 Jun; 10(11):2457-2463. PubMed ID: 28317341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the structural evolution of nanoporous optically transparent CuO photocathodes upon calcination for photoelectrochemical applications.
    Korell L; Lauterbach S; Timm J; Wang L; Mellin M; Kundmann A; Wu Q; Tian C; Marschall R; Hofmann JP; Osterloh FE; Einert M
    Nanoscale Adv; 2024 May; 6(11):2875-2891. PubMed ID: 38817433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the Efficiency of Photoelectrochemical Activity Enhancement for the Nanostructured LaFeO
    Chertkova VP; Iskortseva AN; Pazhetnov EM; Arkharova NA; Ryazantsev SV; Levin EE; Nikitina VA
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient Surface Photovoltage Spectroscopy of (NH
    Bozheyev F; Fengler S; Kollmann J; Klassen T; Schieda M
    ACS Appl Mater Interfaces; 2022 May; 14(19):22071-22081. PubMed ID: 35512324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional Role of Ag-Substitution in Enhancing the Photoelectrochemical Properties of LaFeO
    Sun X; Lan Z; Wang M; Geng Q; Lv X; Li M
    ChemSusChem; 2023 Oct; 16(20):e202300645. PubMed ID: 37438975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevating the charge separation of MgFe
    Kumar GM; Cho HD; Lee DJ; Kumar JR; Siva C; Ilanchezhiyan P; Kim DY; Kang TW
    Chemosphere; 2021 Nov; 283():131134. PubMed ID: 34157619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting.
    Sun K; Madsen K; Andersen P; Bao W; Sun Z; Wang D
    Nanotechnology; 2012 May; 23(19):194013. PubMed ID: 22539234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting.
    Lim YF; Chua CS; Lee CJ; Chi D
    Phys Chem Chem Phys; 2014 Dec; 16(47):25928-34. PubMed ID: 25355367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Engineering of Cu
    Heo J; Bae H; Mane P; Burungale V; Seong C; Ha JS
    ACS Omega; 2023 Sep; 8(36):32794-32803. PubMed ID: 37720750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solar-Driven Syngas Production Using Al-Doped ZnTe Nanorod Photocathodes.
    Jang YJ; Lee C; Moon YH; Choe S
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A oxygen vacancy-modulated homojunction structural CuBi
    Wei S; Wang C; Long X; Wang T; Wang P; Zhang M; Li S; Ma J; Jin J; Wu L
    Nanoscale; 2020 Jul; 12(28):15193-15200. PubMed ID: 32638787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of Photocatalytic and Photoelectrochemical Performance of ZnO by Mg Doping: Experimental and Density Functional Theory Insights.
    Das A; Liu D; Wary RR; Vasenko AS; Prezhdo OV; Nair RG
    J Phys Chem Lett; 2023 May; 14(18):4134-4141. PubMed ID: 37103474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the Mechanisms of Beneficial Cu-Doping of NiO-Based Photocathodes.
    Zhu K; Frehan SK; Jaros AM; O'Neill DB; Korterik JP; Wenderich K; Mul G; Huijser A
    J Phys Chem C Nanomater Interfaces; 2021 Jul; 125(29):16049-16058. PubMed ID: 34484551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts.
    Morales-Guio CG; Liardet L; Mayer MT; Tilley SD; Grätzel M; Hu X
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):664-7. PubMed ID: 25403656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable and Efficient CuO Based Photocathode through Oxygen-Rich Composition and Au-Pd Nanostructure Incorporation for Solar-Hydrogen Production.
    Masudy-Panah S; Siavash Moakhar R; Chua CS; Kushwaha A; Dalapati GK
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27596-27606. PubMed ID: 28731678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemically reduced graphene oxide on silicon nanowire arrays for enhanced photoelectrochemical hydrogen evolution.
    Meng H; Fan K; Low J; Yu J
    Dalton Trans; 2016 Sep; 45(35):13717-25. PubMed ID: 27461187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NiO/Poly(4-alkylthiazole) Hybrid Interface for Promoting Spatial Charge Separation in Photoelectrochemical Water Reduction.
    Lu C; Ma Z; Jäger J; Budnyak TM; Dronskowski R; Rokicińska A; Kuśtrowski P; Pammer F; Slabon A
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29173-29180. PubMed ID: 32491825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical SnS
    Zhang F; Chen Y; Zhou W; Ren C; Gao H; Tian G
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9093-9101. PubMed ID: 30758936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable Low-Band-Gap Sb
    Zhang L; Li Y; Li C; Chen Q; Zhen Z; Jiang X; Zhong M; Zhang F; Zhu H
    ACS Nano; 2017 Dec; 11(12):12753-12763. PubMed ID: 29165986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.