These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 33729220)
21. Lithium-nitrogen-hydrogen systems for ammonia synthesis: exploring a more efficient pathway using lithium nitride-hydride. Ravi M; Makepeace JW Chem Commun (Camb); 2022 May; 58(41):6076-6079. PubMed ID: 35502809 [TBL] [Abstract][Full Text] [Related]
22. Cycling between Molybdenum-Dinitrogen and -Nitride Complexes to Support the Reaction Pathway for Catalytic Formation of Ammonia from Dinitrogen. Arashiba K; Tanaka H; Yoshizawa K; Nishibayashi Y Chemistry; 2020 Oct; 26(59):13383-13389. PubMed ID: 32567737 [TBL] [Abstract][Full Text] [Related]
23. Neutron diffraction and gravimetric study of the iron nitriding reaction under ammonia decomposition conditions. Wood TJ; Makepeace JW; David WIF Phys Chem Chem Phys; 2017 Oct; 19(40):27859-27865. PubMed ID: 28991292 [TBL] [Abstract][Full Text] [Related]
24. Interplay between Theory and Experiment for Ammonia Synthesis Catalyzed by Transition Metal Complexes. Tanaka H; Nishibayashi Y; Yoshizawa K Acc Chem Res; 2016 May; 49(5):987-95. PubMed ID: 27105472 [TBL] [Abstract][Full Text] [Related]
26. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Wang C; Wang S; Yan F; Zhang Z; Shen X; Zhang Z Waste Manag; 2020 Aug; 114():253-262. PubMed ID: 32682090 [TBL] [Abstract][Full Text] [Related]
27. Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition. Zheng W; Cotter TP; Kaghazchi P; Jacob T; Frank B; Schlichte K; Zhang W; Su DS; Schüth F; Schlögl R J Am Chem Soc; 2013 Mar; 135(9):3458-64. PubMed ID: 23350903 [TBL] [Abstract][Full Text] [Related]
28. Nature of Reactive Hydrogen for Ammonia Synthesis over a Ru/C12A7 Electride Catalyst. Kammert J; Moon J; Cheng Y; Daemen L; Irle S; Fung V; Liu J; Page K; Ma X; Phaneuf V; Tong J; Ramirez-Cuesta AJ; Wu Z J Am Chem Soc; 2020 Apr; 142(16):7655-7667. PubMed ID: 32248688 [TBL] [Abstract][Full Text] [Related]
29. Elaboration on the Electronics of Salen Manganese Nitrides: Investigations into Alkoxy-Substituted Ligand Scaffolds. Hein NM; MacNeil GA; Storr T Inorg Chem; 2021 Nov; 60(22):16895-16905. PubMed ID: 34719930 [TBL] [Abstract][Full Text] [Related]
30. Ammonothermal Synthesis and Optical Properties of Ternary Nitride Semiconductors Mg-IV-N Häusler J; Niklaus R; Minár J; Schnick W Chemistry; 2018 Feb; 24(7):1686-1693. PubMed ID: 29205562 [TBL] [Abstract][Full Text] [Related]
31. Design Principle of Molybdenum-Based Metal Nitrides for Lattice Nitrogen-Mediated Ammonia Production. Qian S; Dai T; Feng K; Li Z; Sun X; Chen Y; Nie K; Yan B; Cheng Y JACS Au; 2024 May; 4(5):1975-1985. PubMed ID: 38818058 [TBL] [Abstract][Full Text] [Related]
32. Mechanochemical synthesis of nanostructured metal nitrides, carbonitrides and carbon nitride: a combined theoretical and experimental study. Rounaghi SA; Vanpoucke DEP; Eshghi H; Scudino S; Esmaeili E; Oswald S; Eckert J Phys Chem Chem Phys; 2017 May; 19(19):12414-12424. PubMed ID: 28470318 [TBL] [Abstract][Full Text] [Related]
33. The structure and reactivity of iron nitride complexes. Smith JM; Subedi D Dalton Trans; 2012 Feb; 41(5):1423-9. PubMed ID: 22113554 [TBL] [Abstract][Full Text] [Related]
34. A Comparison of the Reactivity of the Lattice Nitrogen in Tungsten Substituted Co Al Sobhi S; AlShibane I; Catlow CRA; Daisley A; Hargreaves JSJ; Hector AL; Higham MD; Zeinalipour-Yazdi CD ChemSusChem; 2023 Nov; 16(22):e202300945. PubMed ID: 37703103 [TBL] [Abstract][Full Text] [Related]
35. Ammonia Decomposition with Manganese Nitride-Calcium Imide Composites as Efficient Catalysts. Yu P; Guo J; Liu L; Wang P; Wu G; Chang F; Chen P ChemSusChem; 2016 Feb; 9(4):364-9. PubMed ID: 26914173 [TBL] [Abstract][Full Text] [Related]
36. On the possibility of an Eley-Rideal mechanism for ammonia synthesis on Mn Zeinalipour-Yazdi CD Phys Chem Chem Phys; 2018 Jul; 20(27):18729-18736. PubMed ID: 29956697 [TBL] [Abstract][Full Text] [Related]
37. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Abghoui Y; Garden AL; Hlynsson VF; Björgvinsdóttir S; Ólafsdóttir H; Skúlason E Phys Chem Chem Phys; 2015 Feb; 17(7):4909-18. PubMed ID: 25446373 [TBL] [Abstract][Full Text] [Related]
38. Quantification of Active Sites and Elucidation of the Reaction Mechanism of the Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride. Yang X; Kattel S; Nash J; Chang X; Lee JH; Yan Y; Chen JG; Xu B Angew Chem Int Ed Engl; 2019 Sep; 58(39):13768-13772. PubMed ID: 31283868 [TBL] [Abstract][Full Text] [Related]
39. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex. Falcone M; Chatelain L; Scopelliti R; Živković I; Mazzanti M Nature; 2017 Jul; 547(7663):332-335. PubMed ID: 28726827 [TBL] [Abstract][Full Text] [Related]
40. A comparative analysis of the mechanisms of ammonia synthesis on various catalysts using density functional theory. Zeinalipour-Yazdi CD; Hargreaves JSJ; Laassiri S; Catlow CRA R Soc Open Sci; 2021 Nov; 8(11):210952. PubMed ID: 34737878 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]