These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 337296)
21. Kirromycin-induced modifications facilitate the separation of EF-Tu species and reveal intermolecular interactions. Anborgh PH; Swart GW; Parmeggiani A FEBS Lett; 1991 Nov; 292(1-2):232-6. PubMed ID: 1959611 [TBL] [Abstract][Full Text] [Related]
22. EF-Tu from the enacyloxin producing Frateuria W-315 strain: Structure/activity relationship and antibiotic resistance. Créchet JB; Malosse C; Hountondji C Biochimie; 2016 Aug; 127():59-69. PubMed ID: 27126073 [TBL] [Abstract][Full Text] [Related]
23. Transfer of plasmid-borne tuf mutations to the chromosome as a genetic tool for studying the functioning of EF-TuA and EF-TuB in the E. coli cell. Vijgenboom E; Bosch L Biochimie; 1987 Oct; 69(10):1021-30. PubMed ID: 2964874 [TBL] [Abstract][Full Text] [Related]
25. A kirromycin-resistant EF-Tu species reverses streptomycin dependence of Escherichia coli strains mutated in ribosomal protein S12. Zuurmond AM; Zeef LAH; Kraal B Microbiology (Reading); 1998 Dec; 144 ( Pt 12)():3309-3316. PubMed ID: 9884222 [TBL] [Abstract][Full Text] [Related]
26. A growth-defective kirromycin-resistant EF-Tu Escherichia coli mutant and a spontaneously evolved suppression of the defect. Zeef LA; Mesters JR; Kraal B; Bosch L Gene; 1995 Nov; 165(1):39-43. PubMed ID: 7489913 [TBL] [Abstract][Full Text] [Related]
27. The elongation factor EF-Tu from E. coli binds to the upstream activator region of the tRNA-tufB operon. Vijgenboom E; Nilsson L; Bosch L Nucleic Acids Res; 1988 Nov; 16(21):10183-97. PubMed ID: 3057439 [TBL] [Abstract][Full Text] [Related]
28. Elongation factor Tu3 (EF-Tu3) from the kirromycin producer Streptomyces ramocissimus Is resistant to three classes of EF-Tu-specific inhibitors. Olsthoorn-Tieleman LN; Palstra RJ; van Wezel GP; Bibb MJ; Pleij CW J Bacteriol; 2007 May; 189(9):3581-90. PubMed ID: 17337575 [TBL] [Abstract][Full Text] [Related]
29. Specific alterations of the EF-Tu polypeptide chain considered in the light of its three-dimensional structure. Duisterwinkel FJ; Kraal B; De Graaf JM; Talens A; Bosch L; Swart GW; Parmeggiani A; La Cour TF; Nyborg J; Clark BF EMBO J; 1984 Jan; 3(1):113-20. PubMed ID: 6323160 [TBL] [Abstract][Full Text] [Related]
30. Natural kirromycin resistance of elongation factor Tu from the kirrothricin producer Streptomyces cinnamoneus. Cappellano C; Monti F; Sosio M; Donadio S; Sarubbi E Microbiology (Reading); 1997 Feb; 143 ( Pt 2)():617-624. PubMed ID: 9043138 [TBL] [Abstract][Full Text] [Related]
31. GE2270A-resistant mutations in elongation factor Tu allow productive aminoacyl-tRNA binding to EF-Tu.GTP.GE2270A complexes. Zuurmond AM; Martien de Graaf J; Olsthoorn-Tieleman LN; van Duyl BY; Mörhle VG; Jurnak F; Mesters JR; Hilgenfeld R; Kraal B J Mol Biol; 2000 Dec; 304(5):995-1005. PubMed ID: 11124042 [TBL] [Abstract][Full Text] [Related]
32. The unique tuf2 gene from the kirromycin producer Streptomyces ramocissimus encodes a minor and kirromycin-sensitive elongation factor Tu. Olsthoorn-Tieleman LN; Fischer SE; Kraal B J Bacteriol; 2002 Aug; 184(15):4211-8. PubMed ID: 12107139 [TBL] [Abstract][Full Text] [Related]
33. A second tRNA binding site on elongation factor Tu is induced while the factor is bound to the ribosome. Van Noort JM; Kraal B; Bosch L Proc Natl Acad Sci U S A; 1985 May; 82(10):3212-6. PubMed ID: 3923474 [TBL] [Abstract][Full Text] [Related]
34. A deletion mutant lacking three out of four transfer RNA genes upstream of the coding region of tufB. Miyajima A; Yokota T; Takebe Y; Nakamura M; Kaziro Y J Biochem; 1983 Apr; 93(4):1101-8. PubMed ID: 6190797 [TBL] [Abstract][Full Text] [Related]
35. Mutant EF-Tu species reveal novel features of the enacyloxin IIa inhibition mechanism on the ribosome. Zuurmond AM; Olsthoorn-Tieleman LN; Martien de Graaf J; Parmeggiani A; Kraal B J Mol Biol; 1999 Dec; 294(3):627-37. PubMed ID: 10610785 [TBL] [Abstract][Full Text] [Related]
36. Inhibition of bacterial protein synthesis by elongation-factor-Tu-binding antibiotics MDL 62,879 and efrotomycin. Landini P; Bandera M; Goldstein BP; Ripamonti F; Soffientini A; Islam K; Denaro M Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):649-52. PubMed ID: 1590753 [TBL] [Abstract][Full Text] [Related]
37. Regulation of the synthesis of E. coli elongation factor Tu. Young FS; Furano AV Cell; 1981 Jun; 24(3):695-706. PubMed ID: 6166386 [TBL] [Abstract][Full Text] [Related]
38. Synergism between the GTPase activities of EF-Tu.GTP and EF-G.GTP on empty ribosomes. Elongation factors as stimulators of the ribosomal oscillation between two conformations. Mesters JR; Potapov AP; de Graaf JM; Kraal B J Mol Biol; 1994 Oct; 242(5):644-54. PubMed ID: 7932721 [TBL] [Abstract][Full Text] [Related]
39. Effects of elfamycins on elongation factor Tu from Escherichia coli and Staphylococcus aureus. Hall CC; Watkins JD; Georgopapadakou NH Antimicrob Agents Chemother; 1989 Mar; 33(3):322-5. PubMed ID: 2499247 [TBL] [Abstract][Full Text] [Related]
40. Function and structure in ribonucleic acid phage Qbeta ribonucleic acid replicase. Effect of inhibitors of EF-Tu on ribonucleic acid synthesis and renaturation of active enzyme. Brown S; Blumenthal T J Biol Chem; 1976 May; 251(9):2749-53. PubMed ID: 1262342 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]