These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Jin R; Cui Y; Chen H; Zhang Z; Weng T; Xia S; Yu M; Zhang W; Shao J; Yang M; Han C; Wang X Acta Biomater; 2021 Sep; 131():248-261. PubMed ID: 34265473 [TBL] [Abstract][Full Text] [Related]
44. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Cidonio G; Alcala-Orozco CR; Lim KS; Glinka M; Mutreja I; Kim YH; Dawson JI; Woodfield TBF; Oreffo ROC Biofabrication; 2019 Jun; 11(3):035027. PubMed ID: 30991370 [TBL] [Abstract][Full Text] [Related]
45. Bioprinting predifferentiated adipose-derived mesenchymal stem cell spheroids with methacrylated gelatin ink for adipose tissue engineering. Colle J; Blondeel P; De Bruyne A; Bochar S; Tytgat L; Vercruysse C; Van Vlierberghe S; Dubruel P; Declercq H J Mater Sci Mater Med; 2020 Mar; 31(4):36. PubMed ID: 32206922 [TBL] [Abstract][Full Text] [Related]
46. Hyaluronic acid enhances the mechanical properties of tissue-engineered cartilage constructs. Levett PA; Hutmacher DW; Malda J; Klein TJ PLoS One; 2014; 9(12):e113216. PubMed ID: 25438040 [TBL] [Abstract][Full Text] [Related]
47. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Billiet T; Gevaert E; De Schryver T; Cornelissen M; Dubruel P Biomaterials; 2014 Jan; 35(1):49-62. PubMed ID: 24112804 [TBL] [Abstract][Full Text] [Related]
48. Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs. Caprio ND; Burdick JA Acta Biomater; 2023 Jul; 165():4-18. PubMed ID: 36167240 [TBL] [Abstract][Full Text] [Related]
49. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue. Risbud M; Ringe J; Bhonde R; Sittinger M Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119 [TBL] [Abstract][Full Text] [Related]
50. Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids. Hill L; Bruns J; Zustiak SP Acta Biomater; 2021 Sep; 132():437-447. PubMed ID: 34010694 [TBL] [Abstract][Full Text] [Related]
52. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Beck EC; Barragan M; Tadros MH; Gehrke SH; Detamore MS Acta Biomater; 2016 Jul; 38():94-105. PubMed ID: 27090590 [TBL] [Abstract][Full Text] [Related]
53. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels. Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330 [TBL] [Abstract][Full Text] [Related]
54. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
55. 3D printing and characterization of human nasoseptal chondrocytes laden dual crosslinked oxidized alginate-gelatin hydrogels for cartilage repair approaches. Schwarz S; Kuth S; Distler T; Gögele C; Stölzel K; Detsch R; Boccaccini AR; Schulze-Tanzil G Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111189. PubMed ID: 32806255 [TBL] [Abstract][Full Text] [Related]
56. Assessing the advantages of 3D bioprinting and 3D spheroids in deciphering the osteoarthritis healing mechanism using human chondrocytes and polarized macrophages. Majumder N; Roy S; Sharma A; Arora S; Vaishya R; Bandyopadhyay A; Ghosh S Biomed Mater; 2024 Jan; 19(2):. PubMed ID: 38198731 [TBL] [Abstract][Full Text] [Related]
57. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016 [TBL] [Abstract][Full Text] [Related]
58. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink. Skardal A; Devarasetty M; Kang HW; Seol YJ; Forsythe SD; Bishop C; Shupe T; Soker S; Atala A J Vis Exp; 2016 Apr; (110):e53606. PubMed ID: 27166839 [TBL] [Abstract][Full Text] [Related]
59. Single-Step Biofabrication of In Situ Spheroid-Forming Compartmentalized Hydrogel for Clinical-Sized Cartilage Tissue Formation. van Loo B; Schot M; Gurian M; Kamperman T; Leijten J Adv Healthc Mater; 2024 Jan; 13(2):e2300095. PubMed ID: 37793116 [TBL] [Abstract][Full Text] [Related]
60. Impact of modified gelatin on valvular microtissues. Roosens A; Handoyo YP; Dubruel P; Declercq H J Tissue Eng Regen Med; 2019 May; 13(5):771-784. PubMed ID: 30770648 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]