These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33729774)

  • 1. Progress in the Theory of X-ray Spectroscopy: From Quantum Chemistry to Machine Learning and Ultrafast Dynamics.
    Rankine CD; Penfold TJ
    J Phys Chem A; 2021 May; 125(20):4276-4293. PubMed ID: 33729774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating X-ray Spectroscopies and Calculating Core-Excited States of Molecules.
    Norman P; Dreuw A
    Chem Rev; 2018 Aug; 118(15):7208-7248. PubMed ID: 29894157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density Functional Theory Based Methods for the Calculation of X-ray Spectroscopy.
    Besley NA
    Acc Chem Res; 2020 Jul; 53(7):1306-1315. PubMed ID: 32613827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Restricted Open Configuration Interaction with Singles Method To Calculate Valence-to-Core Resonant X-ray Emission Spectra: A Case Study.
    Maganas D; DeBeer S; Neese F
    Inorg Chem; 2017 Oct; 56(19):11819-11836. PubMed ID: 28920680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Molecular Photochemistry Using Machine-Learning-Enhanced Quantum Dynamics Simulations.
    Richings GW; Habershon S
    Acc Chem Res; 2022 Jan; 55(2):209-220. PubMed ID: 34982533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved X-ray spectroscopies of chemical systems: New perspectives.
    Chergui M
    Struct Dyn; 2016 May; 3(3):031001. PubMed ID: 27376102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valence-to-core-detected X-ray absorption spectroscopy: targeting ligand selectivity.
    Hall ER; Pollock CJ; Bendix J; Collins TJ; Glatzel P; DeBeer S
    J Am Chem Soc; 2014 Jul; 136(28):10076-84. PubMed ID: 24946007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational approaches for XANES, VtC-XES, and RIXS using linear-response time-dependent density functional theory based methods.
    Nascimento DR; Govind N
    Phys Chem Chem Phys; 2022 Jun; 24(24):14680-14691. PubMed ID: 35699090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin-vibronic quantum dynamics for ultrafast excited-state processes.
    Eng J; Gourlaouen C; Gindensperger E; Daniel C
    Acc Chem Res; 2015 Mar; 48(3):809-17. PubMed ID: 25647179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended quasiparticle approach to non-resonant and resonant X-ray emission spectroscopy.
    Ohno K; Aoki T
    Phys Chem Chem Phys; 2022 Jul; 24(27):16586-16595. PubMed ID: 35789351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. K- and L-edge X-ray Absorption Spectroscopy (XAS) and Resonant Inelastic X-ray Scattering (RIXS) Determination of Differential Orbital Covalency (DOC) of Transition Metal Sites.
    Baker ML; Mara MW; Yan JJ; Hodgson KO; Hedman B; Solomon EI
    Coord Chem Rev; 2017 Aug; 345():182-208. PubMed ID: 28970624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3d-4f Resonant Inelastic X-ray Scattering of Actinide Dioxides: Crystal-Field Multiplet Description.
    Butorin SM
    Inorg Chem; 2020 Nov; 59(22):16251-16264. PubMed ID: 33136396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New reflections on hard X-ray photon-in/photon-out spectroscopy.
    Lafuerza S; Retegan M; Detlefs B; Chatterjee R; Yachandra V; Yano J; Glatzel P
    Nanoscale; 2020 Aug; 12(30):16270-16284. PubMed ID: 32760987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant inelastic X-ray scattering using a miniature dispersive Rowland refocusing spectrometer.
    Ditter AS; Holden WM; Cary SK; Mocko V; Latimer MJ; Nelson EJ; Kozimor SA; Seidler GT
    J Synchrotron Radiat; 2020 Mar; 27(Pt 2):446-454. PubMed ID: 32153283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear dynamics in resonant inelastic X-ray scattering and X-ray absorption of methanol.
    Vaz da Cruz V; Ignatova N; Couto RC; Fedotov DA; Rehn DR; Savchenko V; Norman P; Ågren H; Polyutov S; Niskanen J; Eckert S; Jay RM; Fondell M; Schmitt T; Pietzsch A; Föhlisch A; Gel'mukhanov F; Odelius M; Kimberg V
    J Chem Phys; 2019 Jun; 150(23):234301. PubMed ID: 31228920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-equilibrium x-ray spectroscopy using direct quantum dynamics.
    Northey T; Duffield J; Penfold TJ
    J Chem Phys; 2018 Sep; 149(12):124107. PubMed ID: 30278681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capturing Ultrafast Quantum Dynamics with Femtosecond and Attosecond X-ray Core-Level Absorption Spectroscopy.
    Loh ZH; Leone SR
    J Phys Chem Lett; 2013 Jan; 4(2):292-302. PubMed ID: 26283437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonadiabatic molecular dynamics simulations: synergies between theory and experiments.
    Tavernelli I
    Acc Chem Res; 2015 Mar; 48(3):792-800. PubMed ID: 25647401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of Valence-to-Core X-ray Emission Spectroscopy for Tracking Transient Species.
    March AM; Assefa TA; Bressler C; Doumy G; Galler A; Gawelda W; Kanter EP; Németh Z; Pápai M; Southworth SH; Young L; Vankó G
    J Phys Chem C Nanomater Interfaces; 2015 Jul; 119(26):14571-14578. PubMed ID: 26568779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the sensitivity of hard X-ray spectroscopies to the chemical state of Br.
    Bordage A; Pápai M; Sas NS; Szlachetko J; Nachtegaal M; Vankó G
    Phys Chem Chem Phys; 2013 Jul; 15(26):11088-98. PubMed ID: 23719632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.