These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 33729934)
1. Characterization of an Array-Based Dual-Frequency Transducer for Superharmonic Contrast Imaging. Yang J; Cherin E; Yin J; Newsome IG; Kierski TM; Pang G; Carnevale CA; Dayton PA; Foster FS; Demore CEM IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jul; 68(7):2419-2431. PubMed ID: 33729934 [TBL] [Abstract][Full Text] [Related]
2. In Vitro Superharmonic Contrast Imaging Using a Hybrid Dual-Frequency Probe. Cherin E; Yin J; Forbrich A; White C; Dayton PA; Foster FS; Démoré CEM Ultrasound Med Biol; 2019 Sep; 45(9):2525-2539. PubMed ID: 31196746 [TBL] [Abstract][Full Text] [Related]
3. Phantom evaluation of stacked-type dual-frequency 1-3 composite transducers: A feasibility study on intracavitary acoustic angiography. Kim J; Li S; Kasoji S; Dayton PA; Jiang X Ultrasonics; 2015 Dec; 63():7-15. PubMed ID: 26112426 [TBL] [Abstract][Full Text] [Related]
4. Acoustic characterization of contrast-to-tissue ratio and axial resolution for dual-frequency contrast-specific acoustic angiography imaging. Lindsey BD; Rojas JD; Martin KH; Shelton SE; Dayton PA IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Oct; 61(10):1668-87. PubMed ID: 25265176 [TBL] [Abstract][Full Text] [Related]
5. Real-time ultrasound angiography using superharmonic dual-frequency (2.25MHz/30MHz) cylindrical array: In vitro study. Wang Z; Martin KH; Dayton PA; Jiang X Ultrasonics; 2018 Jan; 82():298-303. PubMed ID: 28941396 [TBL] [Abstract][Full Text] [Related]
6. An Integrated System for Superharmonic Contrast-Enhanced Ultrasound Imaging: Design and Intravascular Phantom Imaging Study. Li Y; Ma J; Martin KH; Yu M; Ma T; Dayton PA; Jiang X; Shung KK; Zhou Q IEEE Trans Biomed Eng; 2016 Sep; 63(9):1933-1943. PubMed ID: 26672030 [TBL] [Abstract][Full Text] [Related]
7. Contrast Enhanced Superharmonic Imaging for Acoustic Angiography Using Reduced Form-Factor Lateral Mode Transmitters for Intravascular and Intracavity Applications. Wang Z; Heath Martin K; Huang W; Dayton PA; Jiang X IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Feb; 64(2):311-319. PubMed ID: 27775903 [TBL] [Abstract][Full Text] [Related]
8. A preliminary engineering design of intravascular dual-frequency transducers for contrast-enhanced acoustic angiography and molecular imaging. Ma J; Martin K; Dayton PA; Jiang X IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):870-80. PubMed ID: 24801226 [TBL] [Abstract][Full Text] [Related]
9. A 35 MHz/105 MHz Dual-Element Focused Transducer for Intravascular Ultrasound Tissue Imaging Using the Third Harmonic. Lee J; Moon JY; Chang JH Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30011948 [TBL] [Abstract][Full Text] [Related]
10. Assessment of the Superharmonic Response of Microbubble Contrast Agents for Acoustic Angiography as a Function of Microbubble Parameters. Newsome IG; Kierski TM; Dayton PA Ultrasound Med Biol; 2019 Sep; 45(9):2515-2524. PubMed ID: 31174922 [TBL] [Abstract][Full Text] [Related]
11. An Improved CMUT Structure Enabling Release and Collapse of the Plate in the Same Tx/Rx Cycle for Dual-Frequency Acoustic Angiography. Mahmud MM; Wu X; Sanders JL; Biliroglu AO; Adelegan OJ; Newsome IG; Yamaner FY; Dayton PA; Oralkan O IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Nov; 67(11):2291-2302. PubMed ID: 32746179 [TBL] [Abstract][Full Text] [Related]
12. Molecular Acoustic Angiography: A New Technique for High-resolution Superharmonic Ultrasound Molecular Imaging. Shelton SE; Lindsey BD; Tsuruta JK; Foster FS; Dayton PA Ultrasound Med Biol; 2016 Mar; 42(3):769-81. PubMed ID: 26678155 [TBL] [Abstract][Full Text] [Related]
13. On the relationship between microbubble fragmentation, deflation and broadband superharmonic signal production. Lindsey BD; Rojas JD; Dayton PA Ultrasound Med Biol; 2015 Jun; 41(6):1711-25. PubMed ID: 25766572 [TBL] [Abstract][Full Text] [Related]
14. Implementation of a Novel 288-Element Dual-Frequency Array for Acoustic Angiography: In Vitro and In Vivo Characterization. Newsome IG; Kierski TM; Pang G; Yin J; Yang J; Cherin E; Foster FS; Carnevale CA; Demore CEM; Dayton PA IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Aug; 68(8):2657-2666. PubMed ID: 33872146 [TBL] [Abstract][Full Text] [Related]
15. Dual-Frequency Piezoelectric Endoscopic Transducer for Imaging Vascular Invasion in Pancreatic Cancer. Lindsey BD; Kim J; Dayton PA; Jiang X IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jul; 64(7):1078-1086. PubMed ID: 28489536 [TBL] [Abstract][Full Text] [Related]
16. Acoustic Angiography: Superharmonic Contrast-Enhanced Ultrasound Imaging for Noninvasive Visualization of Microvasculature. Newsome IG; Dayton PA Methods Mol Biol; 2022; 2393():641-655. PubMed ID: 34837204 [TBL] [Abstract][Full Text] [Related]
17. Dual-high-frequency ultrasound excitation on microbubble destruction volume. Shen CC; Su SY; Cheng CH; Yeh CK Ultrasonics; 2010 Jun; 50(7):698-703. PubMed ID: 20193957 [TBL] [Abstract][Full Text] [Related]
18. A Dual-Frequency Colinear Array for Acoustic Angiography in Prostate Cancer Evaluation. Li S; Kim J; Wang Z; Kasoji S; Lindsey BD; Dayton PA; Jiang X IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2418-2428. PubMed ID: 30281447 [TBL] [Abstract][Full Text] [Related]
19. Ex Vivo Porcine Arterial and Chorioallantoic Membrane Acoustic Angiography Using Dual-Frequency Intravascular Ultrasound Probes. Martin KH; Lindsey BD; Ma J; Nichols TC; Jiang X; Dayton PA Ultrasound Med Biol; 2016 Sep; 42(9):2294-307. PubMed ID: 27260246 [TBL] [Abstract][Full Text] [Related]